Claim Missing Document
Check
Articles

The Implementation Of The Fletcher-Reeves Algorithm In Predicting The Growth Of Forest Plant Cultures Ramahdhani, Dwi; Solikhun, Solikhun
International Journal of Engineering and Computer Science Applications (IJECSA) Vol. 2 No. 1 (2023): March 2023
Publisher : Universitas Bumigora Mataram-Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/ijecsa.v2i1.2418

Abstract

Forest protection and development are essential because forests are the world's lungs. In addition, the HTI organization (modern manor backwoods) began to hide again. However, due to the great interest in wood to be used as raw material for material and property production lines, large organizations started to develop hamlet wood which was then marketed abroad, such as pressed wood, rattan, sawn timber, and done jobs for individuals in the area around the hamlet. By making a prediction, knowledge about the growth of forest plants can be known so that they can anticipate or minimize the risks that may arise. They can assist in determining policies and making decisions. This study aims to predict the growth of forest plants in the following year using an Artificial Neural Network Algorithm. The information used in this study is from the Central Bureau of Statistics from 2011 to 2022. The method of implementing this research uses the Fletcher-Reeves Algorithm, one of the Artificial Neural Network methods using 5 models, including 7-10-1, 7-15- 1, 7-20-1, 7-25-1, and 7-30-1. Of the five models, the structural model is 7-20-1 with an MSE value of 0.00037397. It can be said that this model can be used because it produces a fast combination and a short period of time.
The Performance Machine Learning Powel-Beale for Predicting Rubber Plant Production in Sumatera Dani, Siska Rama; Solikhun, Solikhun; Priyanto, Dadang
International Journal of Engineering and Computer Science Applications (IJECSA) Vol. 2 No. 1 (2023): March 2023
Publisher : Universitas Bumigora Mataram-Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/ijecsa.v2i1.2420

Abstract

This study aims to predict rubber plants in Sumatra; rubber plants have a relatively high economic value; rubber sap must be cultivated because it is a product of the rubber plant, which is the raw material for the rubber industry, so in large quantities. Therefore, rubber sap, the selling value will increase so that it can increase farmers' income. Rubber production in Sumatra experiences ups and downs; therefore, this study aims to predict rubber plants using the Powell-Beale algorithm method, one of the Artificial Neural Network methods often used for data prediction, implemented using Matlab software. That supports it. This study does not discuss the prediction results. Still, it discusses the ability of the Powell-Beale algorithm to make predictions based on datasets of rubber plant production in recent years obtained from the Central Statistics Agency. Based on this data, a network architecture model will be formed and determined, including 6-10-1, 6-15-1, 6-30-1, 6-45-1 and 6-50-1. The best architecture is 6-15-1, with the lowest Performance/MSE test score of 0.00791984.
The Utilization Of The Conjugate Gradient Algorithm For Predicting School Year Expectations By Province Simbolon, Astri Rismauli; Solikhun, Solikhun
International Journal of Engineering and Computer Science Applications (IJECSA) Vol. 2 No. 1 (2023): March 2023
Publisher : Universitas Bumigora Mataram-Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/ijecsa.v2i1.2426

Abstract

Expected Length of School (HLS) is the length of school (in years) that is expected to be felt by children at a certain age in the future. It is assumed that the probability that the child will remain in school at the following ages is the same as the probability of the population attending school per total population for the current age. Length of School is also a benchmark for evaluating government programs in improving Human Resources that excel in the competition of technological advances. The purpose of this study is to apply the Conjugate Gradient Algorithm with the Best Performance for Predicting School Life Expectancy in Indonesia. Research data on the Expectation of Schooling in Indonesia consists of 10 Provinces obtained from the Central Statistics Agency from 2016 to 2021. This study uses 5 architectural models, namely 2-10-1, 2-15-1, 2-20-1, 2-25-1 and 2-30-1. Of the five architectural models used, the best architectural model is 2-3-1 with an MSE of 0.000000002 in two seconds. Based on this best architectural model, it will be used to predict the Expectation of Old Schools in Indonesia for the next five years, namely from 2022 to 2026.
SISTEM PENDUKUNG KEPUTUSAN DALAM PEMILIHAN KETUA OSIS DI SMK SWASTA ISLAM PROYEK UISU SIANTAR DENGAN MENGGUNAKAN METODE SAW Indri, Indriyani; Wika, Wika Kasanova; Solikhun, Solikhun
Jurnal Manajemen, Pendidikan Dan Ilmu Komputer Vol. 1 No. 1 (2024): JMENDIKKOM Volume 1 No 1 Januari 2024
Publisher : Yayasan Darus Soleh Parung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.65309/84yx1f56

Abstract

OSIS atau kepanjangan dari Organisasi Siswa Intra Sekolah merupakan organisasi tertinggi di sekolah yang berfungsi untuk menggerakkan siswa agar dapat berkontribusi dalam berbagai aktvitas yang mendukung sekolah. SMK Swasta Islam Proyek UISU Siantar juga memiliki OSIS yang dilakukan siswa dalam menjalankan kegiatan-kegiatan yang melibatkan siswa. Tujuan dalan penelitian ini adalah untuk melakukan pemilihan Ketua OSIS di SMK Swasta Islam Proyek UISU Siantar dengan menggunakan Sistem Pendukung Keputusan dengan Algoritma SAW. Adapun data penelitian ini sebanyak 9 siswa calon yang akan terpilih menjadi Ketua OSIS. Penelitian ini menghasilkan urutan tertinggi pertama diperoleh A6 = Bima dengan hasil 92,1007 yang dakan menjadi calon Ketua OSIS dari hasil Algoritma SAW. Dengan hasil penelitian ini dapat memberikan keputusan yang akan diambil oleh pihak Sekolah dan siswa di SMK Swasta Islam Proyek UISU Siantar. 
Implementasi Algoritma Backpropagation Dalam Prediksi Laju Pertumbuhan Penduduk Di Kabupaten Sinjai Napitupulu, Jessica Evonella; Solikhun, Solikhun
Jurnal Manajemen, Pendidikan Dan Ilmu Komputer Vol. 1 No. 1 (2024): JMENDIKKOM Volume 1 No 1 Januari 2024
Publisher : Yayasan Darus Soleh Parung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.65309/evgesw76

Abstract

Indonesia merupakan salah satu negara yang mempunyai jumlah penduduk terbanyak di dunia sekitar dua ratus juta jiwa dan menduduki urutan keempat setelah Amerika Serikat dalam daftar jumlah penduduk terbanyak di dunia. Pertumbuhan penduduk Indonesia semakin meningkat dari tahun ke tahun, dan wilayah serta kota menjadi semakin padat penduduknya. Semakin bertambah jumlahnya maka luas wilayah pun semakin berkurang akibat kepadatan penduduk. Penelitian ini membahas tentang penerapan Algoritma Backpropagation dalam prediksi  laju pertumbuhan penduduk di Kabupaten Sinjai. Tujuan dari penelitian ini adalah untuk melakukan prediksi yang dapat membantu pemerintah daerah dalam perencanaan pembangunan dan pengelolaan sumber daya yang lebih efektif. Metode Backpropagation digunakan dalam pelatihan model jaringan syaraf tiruan dengan menggunakan data historis jumlah penduduk serta faktor-faktor yang mempengaruhi pertumbuhan tersebut. Tulisan ini memaparkan hasil penelitian yang bertujuan untuk menerapkan algoritma Backpropagation dalam  upaya memprediksi laju pertumbuhan penduduk di Kabupaten Sinjai dari tahun 2013-2021 dengan menggunakan Microsoft Excel dan Matlab versi 2011b untuk pengolahan dan analisis data. Arsitekturnya menggunakan tiga model, yaitu: 4-5-1, 4-10-1, 4-10-1. Model arsitektur yang paling akurat adalah model 4-10-1 yang memiliki Mean Squared Error (MSE) sebesar 0,00000024 dan tingkat akurasi 100% dengan waktu 00:07 pada epoch 247.
New Approach K-Medoids Clustering Based on Chebyshev Distance with Quantum Computing for Anemia Prediction Wahyudi, Mochamad; Solikhun, Solikhun; Pujiastuti, Lise; Weber, Gerhard-Wilhelm
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 25 No. 1 (2025)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v25i1.4180

Abstract

Anemia is a condition where the number of red blood cells or hemoglobin levels is below normal, reducing the blood’s ability to carry oxygen, which can lead to symptoms such as fatigue, weakness, and shortness of breath.This study aims to utilize a quantum computing approach to improve the performance of the K-Medoids method by calculating the Chebyshev Distance to predict anemia. The method used is the K-Medoids clustering method with the calculation of the Chebyshev Distance and quantum computing. A comparative analysis of these methods is carried out with a focus on their performance, especially the accuracy of the test results. This study was conducted using a dataset of medical records of patients with anemia. The dataset was taken from Kaggle. This dataset includes five attributes used to predict anemia disease patterns. The dataset was tested using the classical method and K-Medoids with a quantum computing approach that utilizes the Chebyshev Distance calculation. The results of this study reveal a new alternative model for the K-Medoids algorithm with the Chebyshev Distance calculation influenced by the integration of the quantum computing framework. Specifically, the simulation test results show the same accuracy as the classical K-Medoids method and the K-Medoids method with a quantum computing approach with Chebyshev Distance calculations with an accuracy of 80%. The conclusion of this study highlights that the performance of the K-Medoids method with a quantum computing approach with Chebyshev Distance calculations can be implemented to predict anemia using the clustering method.
OPTIMIZING SHUFFLENET WITH GRIDSEARCHCV FOR GEOSPATIAL DISASTER MAPPING IN INDONESIA Ahmad, Abdullah; Hartama, Dedy; Solikhun, Solikhun; Poningsih, Poningsih
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 11 No. 2 (2025): JITK Issue November 2025
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v11i2.6747

Abstract

Accurate classification of natural disasters is crucial for timely response and effective mitigation. However, conventional approaches often suffer from inefficiency and limited reliability, highlighting the need for automated deep learning solutions. This study proposes an optimized Convolutional Neural Network (CNN) based on the lightweight ShuffleNet architecture, enhanced through GridSearchCV for systematic hyperparameter tuning. Using a geospatial dataset of 3,667 images representing earthquake, flood, and wind-related disasters in Indonesia, the optimized ShuffleNet model achieved a peak accuracy of 99.97%, outperforming baseline CNNs such as MobileNet, GoogleNet, ResNet, DenseNet, and standard ShuffleNet. While these results demonstrate the potential of combining lightweight architectures with automated optimization, the exceptionally high performance also indicates possible risks of overfitting and dataset bias due to limited variability. Therefore, future research should validate this approach using larger, multi-source datasets to ensure robustness and real-world applicability