Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Computing, Engineering, and Design

Optimizing Malware Detection and Prevention on Proxy Servers Through Random Forest and Lexical Feature Analysis Andalas Saputra, Meitro Hartanto; Pebrianti, Dwi; Bayuaji, Luhur; Rusdah
Indonesian Journal of Computing, Engineering, and Design (IJoCED) Vol. 7 No. 1 (2025): IJoCED
Publisher : Faculty of Engineering and Technology, Sampoerna University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35806/ijoced.v7i1.485

Abstract

Malware has become a significant concern due to the increase in malicious websites hosting spam, phishing, malware, and other threats. This research aims to predict malware URLs using lexical features for feature extraction and random forest for classification. The dataset, sourced from kaggle.com, includes benign, phishing, spam, malware, and defacement URLs. To address data imbalance, random oversampling was applied for balanced training. Recursive feature elimination was used to optimize lexical features, testing various sets of features (10, 15, 19, 23, 29, 35) for classification accuracy, achieving 98% accuracy using 23 features. Validation tests with actual university network data confirmed this model’s effectiveness, classifying malicious URLs in 9 minutes using 11,566 samples. URL filtering involved log analyzer tools capturing internet traffic during working hours over one month. Results suggest that this approach can efficiently classify malicious URLs and could be implemented for real-time detection in proxy server logs, aiding IT departments in preventing malware spread via web traffic.
Using Content-Based Filtering and Apriori for Recommendation Systems in a Smart Shopping System Pebrianti, Dwi; Ahmad, Denis; Bayuaji, Luhur; Wijayanti, Linda; Mulyadi, Melisa
Indonesian Journal of Computing, Engineering, and Design (IJoCED) Vol. 6 No. 1 (2024): IJoCED
Publisher : Faculty of Engineering and Technology, Sampoerna University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35806/ijoced.v6i1.393

Abstract

This research is motivated by the increasing significance of online shopping platforms and the challenges faced by users in locating products that align with their preferences and requirements, which can significantly influence the sales performance of online retailers. Consequently, the primary objective of this study is to design and implement a recommendation system capable of identifying suitable products and forecasting the purchase frequency for various product combinations, while also integrating this recommendation system with a smart shopping platform. To achieve this objective, the research employs machine learning techniques, specifically content-based filtering and the Apriori algorithm. Content-based filtering is utilized to analyze user preferences and behavioral patterns related to visited products, while the Apriori algorithm is employed to evaluate support and confidence values for item set combinations, thereby generating frequency values for future transactions involving product combinations. Additionally, a smart shopping system is developed and integrated, enhancing the shopping experience through smartphone applications and streamlining the payment process to facilitate seamless product purchases. The research methodology involves data collection pertaining to products and user preferences, followed by several testing involving a sample group of user respondents. The results demonstrate that the developed recommendation system effectively delivers relevant product recommendations based on user preferences, achieving a confidence value up to 98%. Furthermore, the smart shopping system proves capable of independently assisting users throughout the transaction process, thereby enhancing overall user experience and convenience.