Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Simantec

PERANCANGAN ALAT CERDAS PENDETEKSI KANDUNGAN UNSUR TANAH Hanifudin Sukri; Adi Kurniawan Saputro; Ach Dafid
Jurnal Simantec Vol 9, No 1 (2020)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/simantec.v9i1.9216

Abstract

Kebiasaan para petani dalam bercocok tanam tanpa memperhatikan kondisi tanah sering kali menjadi permasalahan dasar dalam proses bertani. Sehingga mempengaruhi kualitas dan kuantitas hasil bercocok tanam. Penelitian ini bertujuan untuk memberikan update ilmu teknologi kepada para petani dalam menganalisis kandungan tanah. Sistem alat ini cukup sederhana, hanya dengan menancapkan ujung alat instrumentasi ini maka akan keluar hasil analisis. Hasil analisis tersebut akan memunculkan rekomendasi tanaman yang cocok untuk tanah yang di uji menggunakan alat tersebut. Alat tersebut dilengkapi dengan empat macam sensor seperti sensor pH tanah, sensor Suhu Udara, sensor Kelembaban tanah dan sensor Suhu tanah. Sensor tersebut dijadikan sebagai input data untuk diolah menggunakan algortima Fuzzy yang rancang. Harapannya alat ini mampu membantu para petani dalam menganalisis kandungan tanah tanpa biaya yang relatif mahal dan waktu pengujian yang relatif lama untuk mendapatkan hasil analisisnya. Setelah dilakukan pengujian alat maka diperoleh hasil persentase pengujian yaitu 98% keberhasilan alat dalam menampilkan hasil analisis sistem berdasarkan pembacaan sensor pada tanah.
IMPLEMENTATION OF WEBSITE PERFORMANCE EVALUATION WITH SIMILARWEB ON ACADEMIC WEBSITES Ika Oktavia Suzanti; Fifin Ayu Mufarroha; Khusnul Fatimah; Doni Abdul Fatah; Hanifudin Sukri; Achmad Dafid
Jurnal Simantec Vol 10, No 2 (2022)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/simantec.v10i2.14234

Abstract

Trunojoyo University Madura is a state university in Indonesia. The Trunojoyo Madura University website is used for information delivery media. The website can be accessed by anyone and used to make announcements for both students and outsiders. Based on this, the desired website quality must have high performance, usability, mobile friendliness, accessibility, SEO (Search Engine Optimization), connected to social media, and safe. This study was conducted to determine the level of usability through evaluating the performance of the academic website of Trunojoyo Madura University. Therefore, this study evaluates the performance of the website by using an automatic evaluation tool, namely SimilarWeb. This tool checks the level of popularity of a website both in terms of ranking and the number of visitors who access the website. In addition, measurements from the usability side were taken to determine the usability of the website obtained from the responses of students and visitors who have accessed the website. The results showed that by using SimilarWeb website traffic was obtained at a good level. Usability measurement has been carried out, as many as 58 respondents have answered 15 questions.
SISTEM PERAMALAN HASIL PRODUKSI JAGUNG DI KABUPATEN SUMENEP DENGAN PENDEKATAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Dafid, Ach; Sukri, Hanifudin; Sholeh, Mahrus
Jurnal Simantec Vol 12, No 2 (2024): Jurnal Simantec Juni 2024
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/simantec.v12i2.26036

Abstract

Forecasting is an attempt to predict future conditions by testing past data. This forecasting is carried out on corn harvest results based on previous corn harvest data including land area, harvest area, and productivity, using the Backpropagation Artificial Neural Network forecasting system. Because the amount of corn harvest data in Sumenep Regency is very complex and changing, the backpropagation method is very suitable to be applied because it is able to handle complex and changing data. The data used in this study were collected from the book “Sumenep in Figures”. The corn production data used were from 2011 to 2023. The results of the study showed that in the scenario of varying the number of learning rates with values of 0.001, 0.2, 0.4, and 0.8, it was found that the smaller the learning rate in the Backpropagation Artificial Neural Network, the better the MSE value in the validation process. The MSE value from the results of testing learning rates of 0.001, 0.2, 0.4, and 0.8 is 0.008998. In the scenario of varying the number of iterations of 100, 500, and 1000, it is concluded that the more iterations in the Backpropagation Neural Network training, the better the MSE value in the validation process. The prediction results in the 2024 corn harvest test showed good and accurate results with a predicted value per June of 336 tons and a monthly error value of 0.0256 so that the prediction results were higher than the actual data.Keywords: ANN, Backpropagation, Forcasting System, Maize.