Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Classification of pediatric pneumonia using ensemble transfer learning convolutional neural network Cahyani, Denis Eka; Hariadi, Anjar Dwi; Setyawan, Faisal Farris; Gumilar, Langlang; Setumin, Samsul
Bulletin of Electrical Engineering and Informatics Vol 13, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i5.7825

Abstract

Pneumonia is a condition characterised by the sudden inflammation of lung tissue, which is triggered by microorganisms such as fungi, viruses, and bacteria. Chest X-ray imaging (CXR) can detect pneumonia, but it requires considerable time and medical expertise. Consequently, the objective of this study is to diagnose pneumonia using CXR imaging in order to effectively detect early cases of pneumonitis in children. The study employs the ensemble transfer learning convolutional neural network (ETL-CNN) transfer learning ensemble, which combines multiple CNN transfer learning models. Resnet50-VGG19 and VGG19-Xception are the ETL-CNN models used in this investigation. Comparing ETL-CNN models to CNN transfer learning models such as Resnet50, VGG19, and Xception. Pediatric CXR pneumonia, which consists of a normal and pneumonia image, is the source of these study results. The results of this analysis indicate that Resnet50-VGG19 achieved the highest level of accuracy, 99.14%. Additionally, the Resnet50-VGG19 obtained the highest levels of precision and recall when comparing to other models. Consequently, the conclusion of this study is that the Resnet50-VGG19 model can generate acceptable classification performance for pediatric pneumonia based on CXR. This study improves classification results for performance when compared to earlier studies.
Performance evaluation of generative adversarial networks for generating mugshot images from text description Bahrum, Nur Nabilah; Setumin, Samsul; Othman, Nor Azlan; Fitri Maruzuki, Mohd Ikmal; Abdullah, Mohd Firdaus; Che Ani, Adi Izhar
Bulletin of Electrical Engineering and Informatics Vol 13, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i1.5895

Abstract

The process of identifying photos from a sketch has been explored by many researchers, and the performance of the identification process is almost perfect, particularly for viewed sketches. Suspect identification based on sketches is one of the applications in forensic science. To identify the suspect using these kinds of methods, a face sketch is required. Hence, the methods require skilled artists to sketch the suspect based on descriptions provided by eyewitnesses. However, the skills of these artists are different from one another, which results in different rendered sketches. Therefore, this work attempts to propose a new identification method based only on forensic face-written descriptions. To investigate the feasibility of the proposed method, this study has evaluated the performance of some text-to-photo generators on both viewed and forensic datasets using three different models of GAN which are SAGAN, DFGAN, and DCGAN. Then, the generated images are compared to the real photo contained within those datasets to evaluate how well the proposed method recognizes the faces. The results demonstrated that the recognition rate for the generated photos by the DCGAN models is better than the other two models which achieve a 38.3% recognition rate at rank-10 for mugshot identification.
Lung diseases identification using hybrid transfer learning and bidirectional long short-term memory Eka Cahyani, Denis; Tri Oktoviana, Lucky; Yasin, Mohamad; Wahyuningsih, Sapti; Dionixius, Dionixius; Maulidaningsih, Ranti; Setumin, Samsul
Bulletin of Electrical Engineering and Informatics Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i2.9114

Abstract

Lung diseases rank as the third most prevalent cause of mortality globally. Accurate identification of lung disease is essential to provide appropriate medical intervention for patients. This research devised a categorization system for lung diseases using chest X-Rays (CXR). The system can identify bacterial pneumonia, viral pneumonia, COVID-19, tuberculosis, and normal CXR. The approach for detecting lung diseases utilize a combination of hybrid transfer learning and bidirectional long short-term memory. The research included convolutional neural network (CNN) models including Resnet50-BiLSTM, VGG19-BiLSTM, InceptionV3-BiLSTM, Resnet50, VGG19, and InceptionV3. The Resnet50-BiLSTM model outperforms other models in terms of accuracy and overall performance. The Resnet50-BiLSTM model achieved an accuracy of 99.87%. The models that achieve the second greatest accuracy are Resnet50, VGG19-BiLSTM, VGG19, InceptionV3-BiLSTM, and InceptionV3. The research utilizes precision, recall, and F1-Measure to demonstrate that Resnet50-BiLSTM outperforms other methods by achieving the greatest value. This research improves the performance outcomes when compared to earlier studies.