Claim Missing Document
Check
Articles

Found 9 Documents
Search

OBJECTIVE STRESS MEASUREMENT: STUDI KORELASI PARAMETER SALIVA AMYLASE DAN AKTIVITAS GELOMBANG OTAK MENGGUNAKAN ELECTROENCEPHALOGRAPH (EEG) Sahroni, Alvin; Setiawan, Hendra; Mahananto, Faizal; Zakaria, Hasballah
Transmisi: Jurnal Ilmiah Teknik Elektro Vol 22, No 1 Januari (2020): TRANSMISI
Publisher : Departemen Teknik Elektro, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1052.106 KB) | DOI: 10.14710/transmisi.22.1.22-29

Abstract

Stres menjadi suatu permasalahan sosial yang berdampak luas, seperti ekonomi, sosial, agama, dan aspek lainnya di masyarakat. Dengan dampak tersebut, instrumen stress measurement diyakini memiliki urgensi dalam menyelesaikan permasalahan tersebut. Hingga kini, mayoritas studi pengukuran tingkat stres masih menggunakan metode personal assessment (kuesioner) yang memungkinkan terjadinya inkonsistensi dalam proses evaluasinya. Metode pengukur stres lain dengan menggunakan sampel saliva pada manusia yang diyakini mengandung hormon cortisol yang dilepaskan saat stres/manifestasinya muncul. Namun, waktu handling cukup lama dan hasil yang diperoleh tidak konsisten jika dilakukan pengukuran berulang. Penelitian ini bertujuan menginvestigasi bagian otak yang memiliki korelasi antara parameter gelombang otak menggunakan Electroencephalograph (EEG) dengan perangkat saliva amylase chip monitor sebagai salah satu upaya mengestimasi tingkat stres pada seseorang secara objektif menggunakan sampel saliva. Sepuluh orang subjek berpartisipasi dalam penelitian ini. Dengan memberikan stimulasi untuk meningkatkan tingkat stres pada seseorang menggunakan sebuah permainan komputer, respon otak menunjukkan korelasi yang kuat pada bagian frontal/otak depan terhadap hasil pengukuran saliva amylase, terutama pada aktivitas gelombang beta pada bagian F8 dengan tujuh dari sepuluh subjek memiliki nilai korelasi ≥ 0.7. Hal ini menunjukkan bahwa aktivitas gelombang otak pada bagian depan merupakan bagian terpenting untuk mengukur tingkat stres secara objektif menggunakan sinyal biologis secara real time.
Automated Post-Trabeculectomy Bleb Assesment by Using Image Processing Agwin Fahmi Fahanani; Hasballah Zakaria; Andika Prahasta; Elsa Gustianty; R. Maula Rifada; Astrid Chairini
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 4: EECSI 2017
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (660.332 KB) | DOI: 10.11591/eecsi.v4.1002

Abstract

Glaucoma is a second leading cause of blindness after cataract. Glaucoma caused by unbalance absorption of aqueus humour so it increase intraocular pressure. As a result, it surpresses nerve cells so that nerve cells can not get enough blood flow as nutrition intake and can lead to permanent blindness. One of the treatment for glaucoma is by surgical procedure, called trabeculectomy. After the surgery a slightly lifted tissue due to passing fluid, called bleb, should appears. Bleb assesment is necessary to examine the successful of trabeculectomy surgery. One of standard assesment is Indiana Bleb Appearance Grading Scale (IBAGS). Ophthalmologist used this standard to grade the bleb images manually so the result is subjective. This work offered a new approach to standardize the system of bleb assessment by computer software. Features related to bleb height, width and vascularity were extracted from the bleb image by using image processing algorithm. The KNN algorithm then used to classify the image according the IBAGS. The proposed method has successfully increased the Cohen’s kappa coefficient from 0.56 to 0.63. Therefore, it potentially reduced the subjectivity of the bleb grading.
Non-invasive Hemoglobin Measurement for Anemia Diagnosis Raditya Artha Rochmanto; Hasballah Zakaria; Ratih Devi Alviana; Nurhalim Shahib
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 4: EECSI 2017
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1219.779 KB) | DOI: 10.11591/eecsi.v4.1003

Abstract

Hemoglobin is important part of red blood cell to transport oxygen and carbon dioxide. Hemoglobin concentration in the blood can be used as physical condition parameter. A low hemoglobin level is called anemia and high hemoglobin level is called polycythemia. WHO has determined the anemia cut off level of hemoglobin concentration based on age, sex, and condition (pregnant or not). Currently, accurate and reliable hemoglobin concentration measurement uses invasive methods such as cyanmethemoglobin  and  automated  hematology  analyzer.  But these methods are expensive, not real time, high infection risk, and need special techniques. Non-invasive methods offer a better alternative because it has low infection risk, instant result, and portable in size. This work developed a non-invasive hemoglobin measurement for anemia diagnosis based on optical spectroscopy. The system utilized LED and photodiode as optical sensor placed on the fingertip. Photodiode just could obtain DC component, so the signal conditioning circuit which consisted of HPF, LPF and amplifier was used to obtain the AC component of the signal.  This system used microcontroller to control the operation of the hardware and to calculate the hemoglobin concentration.Hemoglobin is important part of red blood cell to transport oxygen and carbon dioxide. Hemoglobin concentration in the blood can be used as physical condition parameter. A low hemoglobin level is called anemia and high hemoglobin level is called polycythemia. WHO has determined the anemia cut off level of hemoglobin concentration based on age, sex, and condition (pregnant or not). Currently, accurate and reliable hemoglobin concentration measurement uses invasive methods such as cyanmethemoglobin and  automated  hematology analyzer. But these methods are expensive, not real time, high infection risk, and need special techniques. Non-invasive methods offer a better alternative because it has low infection risk, instant result, and portable in size. This work developed a non-invasive hemoglobin measurement for anemia diagnosis based on optical spectroscopy. The system utilized LED and photodiode as optical sensor placed on the fingertip. Photodiode just could obtain DC component, so the signal conditioning circuit which consisted of HPF, LPF and amplifier was used to obtain the AC component of the signal. This system used microcontroller to control the operation of the hardware and to calculate the hemoglobin concentration.
Accuracy of Hemoglobin Measurement Using Noninvasive Oxyhemoglobinometer in Pregnant Women at Health Center of Bantul District Ratih Devi Alfiana; Hasballah Zakaria; Muhammad Nurhalim Shahib; Herman Susanto
JNKI (Jurnal Ners dan Kebidanan Indonesia) (Indonesian Journal of Nursing and Midwifery) Vol 6, No 1 (2018): MARET 2018
Publisher : Alma Ata University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (61.554 KB) | DOI: 10.21927/jnki.2018.6(1).59-64

Abstract

Iron deficiency anemia is a major health problem in pregnant women and has a detrimental effect on mothers and newborns. Given the consequences of anemia during pregnancy, an easy and accurate diagnosis is important. During this measurement of hemoglobin levels by involves taking the blood invasively, causing discomfort and trauma for the patient. Therefore, a hemoglobin level gauge is required using a non-invasive oxymeter system, in which the patient will be free of pain with minimal risk of infection and allow for the monitoring of the patient in critical condition. The purpose of this study was to compare the results of hemoglobin concentration using an oxyhemoglobinometer with automated hematology analyzer as gold standard to know the difference of result of accuracy. This study is a diagnostic test with cross sectional design. 78 normal pregnant women who checked their pregnancy at the center of health in Bantul district, each of them are examined their hemoglobin level by using the oxyhemoglobinometer and automated hematology analyzer as a comparison. For the different results were used pairwise t test, and with diagnostic test formula obtained accuracy values. There is a difference between the oxyhemoglobinometer tool with the average of 12.2 ± 1.7 and in the automated hematology analyzer obtained an average of 11.6 ± 1.2. With a value of p 0.001 which means there is a significant difference between the two tools. The results of the diagnostic test analysis obtained an accuracy of 69.2%. The oxyhemoglobinometer device cannot be used as an accurate measurement of hemoglobin levels, because the tool its low of accuracy
Avoiding Machine Learning Becoming Pseudoscience in Biomedical Research Meredita Susanty; Ira Puspasari; Nilam Fitriah; Dimitri Mahayana; Tati Erawati Latifah Rajab; Hasballah Zakaria; Agung Wahyu Setiawan; Rukman Hertadi
Jurnal Informatika Vol 10, No 1 (2023): April 2023
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/inf.v10i1.12787

Abstract

The use of machine learning harbours the promise of more accurate, unbiased future predictions than human beings on their own can ever be capable of. However, because existing data sets are always utilized, these calculations are extrapolations of the past and serve to reproduce prejudices embedded in the data. In turn, machine learning prediction result raises ethical and moral dilemmas. As mirrors of society, algorithms show the status quo, reinforce errors, and are subject to targeted influences – for good and the bad. This phenomenon makes machine learning viewed as pseudoscience. Besides the limitations, injustices, and oracle-like nature of these technologies, there are also questions about the nature of the opportunities and possibilities they offer. This article aims to discuss whether machine learning in biomedical research falls into pseudoscience based on Popper and Kuhn's perspective and four theories of truth using three study cases. The discussion result explains several conditions that must be fulfilled so that machine learning in biomedical does not fall into pseudoscience
PENGARUH KADAR TRIGLISERIDA TERHADAP KEKAKUAN ARTERI PADA MODEL HEWAN TIKUS WISTAR JANTAN Patonah Hasimun; Hasballah Zakaria
Kartika : Jurnal Ilmiah Farmasi Vol 7 No 2 (2019)
Publisher : Fakultas Farmasi Universitas Jenderal Achmad Yani, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26874/kjif.v7i2.307

Abstract

ABSTRAK Hasil studi epidemiologi diketahui bahwa trigliserida merupakan salah satu factor resiko independent terjadinya penyakit kardiovaskular walaupun target kadar low density lipoprotein (LDL) telah tercapai dengan obat statin. Diduga terdapat hubungan antara kadar trigliserida dengan elastisitas arteri. Kekakuan arteri telah diakui berkaitan erat dengan penyakit kardiovaskular. Penelitian ini bertujuan untuk mengetahui efek hipertrigliseridemia terhadap tingkat kekakuan arteri pada model hewan tikus Wistar yang diinduksi pakan tinggi lemak dan fruktosa 25%. Sejumlah 10 ekor tikus dikelompokkan secara acak menjadi 2 kelompok terdiri dari kelompok control normal menerima pakan normal dan kelompok control positif menerima pakan tinggi lemak dan air minum fruktosa 25% selama 28 hari. Pengukuran pulse wave velocity (PWV), denyut jantung, dan kadar trigliserida serum dilakukan pada hari ke 28. Hasil menunjukkan, kelompok kontrol positif mengalami kenaikan kadar trigliserida serum yang disertai dengan meningkatnya nilai PWV dan denyut jantung yang menunjukkan terjadinya kekakuan arteri yang berbeda bermakna secara statistik terhadap kelompok kontrol normal (p<0.05). Hasil dapat disimpulkan bahwa terdapat hubungan positif antara kadar trigliserida dengan kekakuan arteri. Semakin tinggi kadar trigliserida meningkatkan kekakuan arteri sehingga resiko kardiovaskular semakin meningkat. Kata kunci : trigliserida, kekakuan arteri, denyut jantung, kardiovaskular   ABSTRACT Epidemiological studies report that triglycerides are an independent risk factor for cardiovascular disease even though the target level of low density lipoprotein (LDL) has been achieved with statin drugs. It is suspected that there is a relationship between triglyceride levels and arterial elasticity. Arterial stiffness has been recognized as being closely related to cardiovascular disease. This study aims to determine the effect of hypertriglyceridemia on arterial stiffness in animal models of Wistar rats induced by a high-fat diet and 25% fructose in drinking water. A total of 10 rats were randomly divided into 2 groups consisting of a normal control group receiving normal feed and a positive control group receiving a high-fat diet and 25% fructose in drinking water for 28 days. Measurements of pulse wave velocity (PWV), heart rate, and serum triglyceride levels were carried out on day 28. The positive control group experienced an increase in serum triglyceride levels accompanied by an increase in PWV and heart rate that was statistically significantly different (p <0.05) compared to the group normal. The results concluded that there was a positive relationship between triglyceride levels and arterial stiffness. Higher triglyceride levels increase arterial stiffness. it increases the risk of cardiovascular disease. Keywords : triglyceride, arterial stiffness, heart rate, cardiovascular
Neural Network Algorithm for Biometric Analysis of Human Retina Image Nst, Tuti Adi Tama; DEA, Bambang Hidayat; Andini, Nur; Zakaria, Hasballah
Journal of Computer Science, Information Technology and Telecommunication Engineering Vol 5, No 2 (2024)
Publisher : Universitas Muhammadiyah Sumatera Utara, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30596/jcositte.v5i2.20000

Abstract

Identity recognition is an important process because many systems require a valid user identity for security and access control. Identity recognition such as passwords, signatures, id cards have some weaknesses that are they can be duplicated, stolen, forgotten, and even lost. Identity recognition using biometric techniques is known to be more reliable. Biometric technique is a recognition and classification technique that uses human behavior and physical atributes. In this research, a non-realtime simulation system is designed to identify a person by biometric of retina image. The system can identify one's identity through pattern of retinal blood vessels. The processes of this system divided into two stages that are training stages and testing stage. The identification process begins with prepocessing retinal photo. Biometric features extracted by using Discrete Orthonormal S Transform (DOST). Biometric classification by using Adaptive Resonance Theory 2 (ART 2) with unsupervised learning process that can recall previously learned patterns . The results obtained from this study showed 65% of accuracy  for the right retina image and 50% of accuracy for the left retina image. Computing time is about 6 seconds. Further development is needed to improve the accuracy of the system as a security and access control systems.
EEG band power analysis corresponding to salivary amylase activity during stressful computer gameplay Sahroni, Alvin; Mahananto, Faizal; Zakaria, Hasballah; Setiawan, Hendra
Communications in Science and Technology Vol 7 No 1 (2022)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.7.1.2022.676

Abstract

The cortisol and norepinephrine from human salivary can represent psychological conditions. A portable salivary amylase monitor device (sAA) has existed; however, how the sAA corresponds to the central nervous system changes is still limited to carry out. Twenty university students aged between 20 and 22 years participated in which they played a stressful computer game during the experiment. Nineteen EEG electrodes were attached to the head scalp while the relative power on the delta, theta, alpha, and beta-band was calculated. The sAA value was obtained using a portable device called Nipro Cocorometer from Japan. The sAA levels and the brain's relative band power increased. Beta waves of the brain's right hemisphere were found higher than that of the left hemisphere, especially on the right temporal (T4, p < 0.01). Then, we concluded that the beta-band power on the right hemisphere corresponds to wthe sAA changes.
Pembersihan Artefak EOG dari Sinyal EEG menggunakan Denoising Autoencoder PERDHANA, HASBIAN FAUZY; ZAKARIA, HASBALLAH
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 10, No 3: Published July 2022
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v10i3.639

Abstract

ABSTRAKElektroensefalografi (EEG) adalah teknik perekaman yang merekam aktivitas elektrik pada otak menggunakan elektroda yang ditempelkan pada kulit kepala. Artefak elektrookulografi (EOG) adalah salah satu artefak yang kerap muncul pada perekaman EEG dikarenakan pergerakan mata dan menyebabkan sinyal EEG berubah bentuk. Untuk membersihkan EEG, artefak perlu dibuang dengan tetap menjaga informasi penting dari EEG. Pada penelitian ini kami mendeteksi artefak EOG menggunakan Independent Component Analysis (ICA) dan deteksi puncak, dan untuk rekonstruksi sinyal EEG kami menggunakan Denoising Autoencoder (DAE). Pada penelitian ini kami meneliti model DAE apakah dapat merekonstruksi sinyal EEG dari artefak EOG. Metode pendeteksian artefak mendapatkan 85% sensitivitas dan 83% Positive Predictive Value (PPV) pada dataset sekunder dan 82% sensitivitas pada dataset primer. Model DAE dilatih dengan validasi silang 10 lipat dan mendapatkan rerata mean squared error (MSE) 0,007±0,008. Penelitian ini membuktikan kemampuan DAE untuk merekonstruksi sinyal EEG denganmasukan segmen sinyal EEG terkontaminasi artefak EOG.Kata kunci: EEG, Artefak EOG, Denoising Autoencoder ABSTRACTThe Electroencephalography (EEG) is a recording technique to record electrical activity on the brain using electrodes attached to the head scalp. Electrooculography (EOG) is one of the artifacts that are prone to appear on EEG due to eye movement and cause EEG signals to deform. To fix the EEG signal, we need to remove artifacts while conserving EEG information. In this research, we detect EOG artifactual signal using Independent Component Analysis (ICA) and peak detection and used a generative model Denoising Autoencoder (DAE) to reconstruct clean EEG by using EEG artifact-corrupted signal. Our artifact detection method scores 85% sensitivity and 83% Positive Predictive Value on the secondary dataset and 82% sensitivity on the primary dataset. We train the DAE model with 10-fold cross-validation and got 0.007 ± 0.008 Mean Squared Error (MSE). We demonstrated DAE on its ability to generate a clean EEG segment by feeding it contaminated EEG segment.Keywords: EEG, Eye movement artifact, Denoising Autoencoder