Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : The Indonesian Journal of Computer Science

Perbandingan Algoritma XGBoost dan SVM Dalam Analisis Opini Publik Pemilihan Presiden 2024 Safitri, Dea; Susanti; Rahmaddeni; Fitri, Triyani Arita
The Indonesian Journal of Computer Science Vol. 13 No. 3 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i3.4041

Abstract

Pemilihan presiden dipengaruhi oleh berbagai faktor, termasuk latar belakang kandidat, masalah politik, dan preferensi ideologis, menjadikan pemilihan presiden sebagai subjek klasifikasi yang kompleks dan menarik. Menganalisis sentimen publik terhadap kandidat dan isu-isu politik memberikan wawasan penting tentang dinamika politik selama pemilihan. Penelitian ini berfokus pada pemilihan presiden dan membandingkan kinerja dua algoritma klasifikasi populer, XGBoost dan SVM, untuk menentukan metode mana yang lebih efektif. Setelah beberapa preprocessing teks dari 562 tweet, kami menemukan bahwa mayoritas pengguna Twitter cenderung memilih 347 tweet "Prabowo". Model Extreme Gradient Boosting (XGBoost) menunjukkan performa terbaik dengan presisi 78%, presisi 76%, recall 78%, dan skor f1 76%. Hasil ini menunjukkan bahwa XGBoost adalah model terbaik untuk mengklasifikasikan opini publik terkait pemilihan presiden 2024 dan memberikan kontribusi penting untuk memahami efektivitas metode klasifikasi dalam konteks pemilihan presiden.