Articles
ZAT WARNA ALAMI BERBASIS LIMBAH SABUT KELAPA MUDA (COCO NUCIFERA) UNTUK PEWARNAAN KAIN BATIK
Agus Haerudin Agus;
Muhammad Ridwan Ridwan Andi Purnomo;
Sholeh Sholeh Ma'mun
Dinamika Kerajinan dan Batik: Majalah Ilmiah Vol 39, No 1 (2022): DINAMIKA KERAJINAN DAN BATIK : MAJALAH ILMIAH
Publisher : Balai Besar Kerajinan dan Batik
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22322/dkb.v39i1.7378
Sabut kelapa muda salah satu limbah sumber daya alam yang dapat dimanfaatkan sebagai zat warna alami karena memiliki senyawa aktif sebagai donor pembawa warna, ketersediaan limbah sabut kelapa muda khususnya dilingkungan para penjual es kelapa muda di Yogyakarta cukup tinggi dan selama ini belum dimanfaatkan dengan optimal. Tujuan penelitian ini ingin mengetahui arah warna dan kualitas warna yang dihasilkan dari ekstrak limbah sabut kelapa muda kulit hijau untuk pewarnaan pada kain batik. Metode penelitian ini eksperimen kualitatif dengan melakukan variasi konsentrasi rasio larutan ekstraksi 1:5 dan 1:10, variasi suhu ekstraksi 60 dan 100 , variasi waktu ekstraksi 2 jam dan 4 jam. Hasil penelitian diperoleh ekstrak sabut kelapa muda kulit hijau sangat baik sebagai zat warna alami untuk pewarnaan kain batik, nilai uji ketuaan warna K/S tertinggi 0,0355 dari perlakuan variasi rasio ekstraksi 1:5, suhu 60 ℃ dan waktu 4 jam, nilai uji ketahanan luntur warna pada pencucian 40 ℃ rata-rata 4-5 kategori baik, nilai uji beda warna L*,a*,b* dan hasil pengamatan visual pada pantone color warna yang dihasilkan brown cork dan cream tan yang mengandung unsur arah warna kemerahan dan kekuningan.
Analisis SWOT untuk Digitalisasi Strategi Pemasaran Usaha Kecil dan Menengah Kerajinan Bambu
Meilinda Fitriani Nur Maghfiroh;
Dian Janari;
sri indrawati indrawati;
Muhammad Ridwan Andi Purnomo
Journal of Appropriate Technology for Community Services Vol. 3 No. 2 (2022)
Publisher : Universitas Islam Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.20885/jattec.vol3.iss2.art5
Digitalisasi dalam berbagai bidang secara umum telah diakui sebagai salah satu akselerator dalam pembangunan perekonomian di Indonesia, termasuk bagi usaha kecil, dan menengah (UKM). Salah satu bidang yang melakukan transformasi secara masif seiring dengan perkembangan teknologi adalah bidang pemasaran. Strategi pemasaran digital menggunakan media seperti situs web, media sosial, basis data, maupun digital audio & video, banyak dilakukan untuk menjangkau pelanggan secara lebih luas. Kegiatan pengabdian masyarakat di salah satu UKM penghasil kerajinan bambu diharapkan dapat meningkatkan kesadaran akan pentingnya kemampuan digitalisasi dalam pemasaran produk. Saat ini fungsi akun media sosial yang dimiliki UKM tersebut tidak berfungsi secara maksimal. Oleh sebab itu, permasalahan yang ada terkait dengan strategi pemasaran secara digital perlu dieksplorasi dan dianalisis lebih lanjut. Melalui analisis SWOT ditemukan bahwa saat ini, untuk dapat memanfaatkan peluang dan menghadapi ancaman, perusahaan harus dapat mengeliminasi weakness untuk dapat mengoptimalkan pemasaran melalui media digital yang telah berjalan.
Penggunaan Teknik Analisis Data Deep Learning dalam Pengoptimalan Pemeliharaan Terrencana Berkapasitas
Muhammad Ridwan Andi Purnomo
Jurnal Sistem dan Manajemen Industri Vol. 6 No. 2 (2022): December
Publisher : Universitas Serang Raya
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (797.846 KB)
|
DOI: 10.30656/jsmi.v6i2.5076
Manufacturing systems must be supported by the availability of materials, a streamlined production process and a prepared production line to achieve the production target. In a mass customization manufacturing system, the number of machines required for customization is relatively small. Conse-quently, maintenance on critical machines will impact this manufacturing system the most. Two types of maintenance strategies are implemented: corrective and preventive maintenance. The corrective maintenance requires more resources since the time and cost to repair the breakdown machine will be higher due to fatal failure. For the management to consider preventive maintenance while the binding machines are still operational, it must be equipped with a deep analysis demonstrating that fewer resources will be required. This paper discusses two deep analyses: accurate prediction of the binding machines' breakdown based on Mean Time Between Failure (MTBF) data using a deep learning data analytics technique and optimizing the maintenance total cost in the available capacitated time. The findings and results of this paper show that the proposed deep learning data analytics technique can increase the MTBF prediction accuracy by up to 66.12% and reduce the total maintenance cost by up to 4% compared with the original model.
Optimisation-in-the-loop simulation of multi products single vendor-multi buyers supply chain systems with reactive lateral transhipment
Muhammad Ridwan Andi Purnomo
Jurnal Sistem dan Manajemen Industri Vol. 7 No. 2 (2023): December
Publisher : Universitas Serang Raya
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.30656/jsmi.v7i2.6495
Considering that batik is one of the most popular products in Indonesia, it is important to analyse the supply chain system for batik products. In reality, the supply chain system for batik products enables orders between buyers to receive products more rapidly, allowing them to anticipate stock outs and obtain lower ordering costs than when ordering from vendors. It is referred to as reactive lateral transshipment. This paper discusses the development of a simulation-based stochastic optimisation model for a batik product supply chain system with multiproducts and single vendor-multi buyers. The utilised solution searching algorithm is a modified Genetic Algorithms (GA) executed in-loop with the developed simulation-based stochastic model. The results demonstrate that the proposed modified GA is able to provide a global optimum solution, allowing the proposed simulation-based stochastic model to reduce the joint total cost (JTC) of the investigated supply chain system by up to 19% when compared to the local optimisation model in each supply chain party.
Intelligent optimisation for multi-objectives flexible manufacturing cells formation
Muhammad Ridwan Andi Purnomo;
Imam Djati Widodo;
Zainudin Zukhri
Jurnal Sistem dan Manajemen Industri Vol. 8 No. 1 (2024): June
Publisher : Universitas Serang Raya
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.30656/jsmi.v8i1.7974
The primary objective of conventional manufacturing cell formation typically uses grouping efficiency and efficacy measurement to reduce voids and exceptional parts. This objective frequently leads to extreme solutions, such as the persistently significant workload disparity among the manufacturing cells. It will have a detrimental psychological impact on operators who work in each formed manufacturing cell. The complexity of the problem increases when there is a requirement to finish all parts before the midday break, at which point the formed manufacturing cells can proceed with the following production batch after the break. This research examines the formation of manufacturing cells using two widely recognized intelligent optimization techniques: genetic algorithm (G.A.) and particle swarm optimisation (PSO). The discussed manufacturing system has flexible machines, allowing each part to have multiple production routing options. The optimisation process involved addressing four simultaneous objectives: enhancing the efficiency and efficacy of the manufacturing cells, minimizing the deviation of manufacturing cells working time with the allocated working hours, which is prior to the midday break, and ensuring a balanced workload for the formed manufacturing cells. The optimisation results demonstrate that the G.A. outperforms the PSO method and is capable of providing manufacturing cell formation solutions with an efficiency level of 0.86, efficacy level as high as 0.64, achieving a minimum lateness of only 24 minutes from the completion target before midday break and a maximum difference in workload as low as 49 minutes.
Analisis Strategi Digital Marketing Pada UMKM Coffee Shop Di Luwuk, Kabupaten Banggai Untuk Bersaing Di Era 4.0
Alhabsyi, Feni Silvani P;
Purnomo, Muhammad Ridwan Andi;
Kirana, Nabila Lintang;
Apriani, Ratna Agil;
Basuki, Demas Emirbuwono
INTECOMS: Journal of Information Technology and Computer Science Vol 7 No 5 (2024): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31539/intecoms.v7i5.12711
Sosial media menjadikan salah satu media digital marketing bagi para pelaku usaha Caffe Shop. Pada penelitian ini bertujuan untuk menganalisis strategi digital marketing bagi pelaku Usaha Mikro Kecil dan Menegah (UMKM) khususnya pada Coffe Shop. Metode yang digunakan adalah Swot, STP, Marketing Mix, Dimana data yang dikumpul melalui observasi secara langsung, wawancara kepada pelaku usaha, pengisian Kuesioner online kepada masyarakat sekitar. Hasil penelitian menunjukan bahwa Coffe Shop di daerah Kabupaten Banggai masih melakukan pemasaran secara manual atau offline tanpa adanya penjualan atau pemasaran melalui online dikarenakan hampir seluruh Masyarakat penduduk setempat masih menjadikan salah satu sosial media Facebook menjadi popular tidak dengan sosial media lainnya dengan Tingkat persen 40,6%. Dan dari hasil analisis pada Swot, STP, Marketing Mix Dimana terdapat strategi pemasaran yang kurang tepat dengan kualitas SDM yang masih kurang sehingga keterbatasan kemampuan untuk menggunakan sosial media. Akan tetapi dengan memaksimalkan fungsih dari fitur Facebook Business Suite. Mendirikan website pribadi pada Cafeshop, hingga mengaplikasian konten yang menarik di setiap akun sosial media Cafeshop.
Product pricing based on customer perception quality and service convenience using interval type-2 fuzzy logic system
Purnomo, Muhammad Ridwan Andi;
Saputro, Iswoyo Seno
International Journal of Industrial Optimization Vol. 5 No. 2 (2024)
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/ijio.v5i2.10825
In the competitive landscape of customer goods, particularly in the wrapping paper industry, pricing strategies are critical to achieving market success. This study presents a novel approach to product pricing by integrating customer perception quality and service and convenience factors using interval type-2 fuzzy logic system (IT2FLS). The customer perception quality factor is subdivided into material quality and aesthetics design sub-factors while the service and convenience factor comprise web-based ordering system as well as the web-based post-sale customer engagement. The methodology involves collecting data through customer surveys and expert evaluations to quantify the perceived importance and performance of each sub-factor. The IT2FLS is employed to handle the inherent uncertainty and imprecision in experts’ judgment, providing a robust framework for aggregating these qualitative assessments into a comprehensive pricing model. This IT2FLS allows for the dynamic adjustment of pricing based on fluctuating customer perceptions and service levels. The outcome of the proposed IT2FLS is a pricing factor that serves as a multiplier for the standard product price established by the company. The new product prices have been validated also considering historical data and it was found that the prices remain acceptable to customers without drastically impacting sales. This study contributes to the body of knowledge on pricing strategies by offering a sophisticated, mathematically grounded approach that accounts for the complex, fuzzy nature of customer preferences. The proposed model not only enhances pricing accuracy but also provides a flexible tool for managers to adapt pricing strategies in real-time based on customer feedback and service performance.
Implementation of Lean Technique to Improve Efficiency in Quail Egg Farming
Saputra, Rafly Galih;
Purnomo, Muhammad Ridwan Andi
JTI: Jurnal Teknik Industri Vol 11, No 1 (2025): JUNI 2025
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24014/jti.v11i1.37297
The quail farming industry in Indonesia has recently experienced significant growth, which has led to an increase in demand for quail eggs. This shows substantial challenges in quail egg farming, namely low operational efficiency and high levels of waste in the production process. This study aims to improve operational efficiency by reducing waste in a quail egg farming production at CV. Vigaza uses lean manufacturing and the theory of constraints. Lean tools such as value stream mapping, waste assessment model, and value stream analysis tools are applied to identify the dominant wastes. The theory of constraints is used to determine the root cause using the current reality tree. The process activity value-added ratio has improved from 60.73% to 68.91%, lead time has decreased from 12.1 to 10.99 days, and the defect rate has reduced from 0.68% to below 0.5%. Overproduction is recommended to align production with the market demand rather than the production cycle. Integrating the lean method and the constraint theory effectively reduced waste in a small-scale agricultural production, a quail egg farm. These findings suggest a potential for adopting lean techniques in the agricultural sector in Indonesia. Keywords: Lean Manufacturing, Value Stream Mapping, Waste Assessment Model, Value Stream Analysis Tools, Theory of Constraints
Intelligent products pricing in dynamic competition based-on Stackelberg game theory
Purnomo, Muhammad Ridwan Andi
OPSI Vol 18 No 1 (2025): OPSI - June 2025
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Industri UPN "Veteran" Yogyakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31315/opsi.v18i1.14284
Optimising product price is essential in dynamic competitive markets to maximise the total profit of all players and secure their survival in the market. This study addresses the intelligent optimisation of product prices in a competitive environment using Stackelberg game theory (SGT), where both a leader and follower player are considered. The objective is to determine the optimum selling prices for five main products to maximise the profits of all the players. Novel aspects of this study are the integration of optimisation models of all of the players and incorporation demand prediction accuracy into the optimisation process, ensuring that the predicted demand resulting from optimised prices aligns with historical demand data—a factor that has been disregarded by prior studies. Genetic Algorithm (GA) is employed for the optimisation algorithm due to the complexity of the model that involves numerous parameters and decision variables. The results demonstrate that the proposed products selling prices not only enhances the total profits of all of the players but also ensures that the predicted demand pattern closely fits the historical demand data pattern, validating the effectiveness of the approach.
SELF-SERVICE BUSINESS INTELLIGENCE AS A DECISION-MAKING SUPPORT TO MINIMIZE STOCKOUT AT RY MART MINIMARKET
Rosyid, Yaqub Kasuma;
Andi Purnomo, Muhammad Ridwan
International Journal of Multidisciplinary Research and Literature Vol. 4 No. 3 (2025): INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND LITERATURE
Publisher : Yayasan Education and Social Center
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.53067/ijomral.v4i3.325
Some of the problems found in this study include : (1) Stockout happens at RY Mart 1 and RY Mart 2 (2) Inappropriate decision-making because it is not based on data and in-depth analysis. This study aims to minimize stockout based on data and in-depth analysis using Self Service business intelligence at RY Mart. The research method used in this study is Nine Step Kimbal with Online Analytical Processing (OLAP). The data obtained from 2023-2025 transaction record of RY Mart 1 and RY Mart 2. The result of this study is Stockout Dashboard and order planning for RY Mart. The Dashboard shows that the amount of stockout influenced by the increase of sales because of holiday and demography around the mart. Only in RY Mart 1 stockout of Ice Cream happens and the amount of Cigarette and Beverage stockout is greater at RY Mart 2 than RY Mart 1. Safety Stock, Minimum stock, and Minimum Order Quantity are calculated to minimize the stockout.