Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Advances in Applied Sciences

Carbonized mangrove wood as photothermal material for solar water desalination Pandara, Dolfie Paulus; Unso, Kristina; Bobanto, Maria Daurina; Tamuntuan, Gerald Hendrik; Angmalisang, Ping Astony; Ferdy, Ferdy; Tiwow, Vistarani Arini; Kumaunang, Maureen
International Journal of Advances in Applied Sciences Vol 14, No 2: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v14.i2.pp542-551

Abstract

The investigation into the physical properties of carbonized mangrove wood (CMW) is essential for its development as an efficient solar heat absorber. This study explores the physical characteristics of CMW and its potential application in solar desalination. Initially, the mangrove wood was cleaned with running water, followed by ultrasonication at a frequency of 42 kHz in 96% ethanol for 5 minutes, and then heated at 125 °C for 2 hours. The carbonization process was conducted in a furnace for 1 hour at temperatures of 400, 500, and 600 °C. The physical properties of CMW were analyzed using an X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy, and scanning electron microscopy (SEM). The findings revealed the formation of a carbon structure at 2 theta angles of approximately 24.08, 23.26, and 23.16°, with carbon contents of 45.05, 36.86, and 39.37%, respectively. CMW was identified as a porous material, making it highly effective for sunlight absorption in seawater evaporation. The hydroxyl content within the CMW structure enhanced its water evaporation capabilities. In experimental investigations aimed at desalinating seawater, a 300-watt halogen lamp was positioned 15 centimeters above the CMW's surface, resulting in an evaporation rate of 5.33 kg.m-2.h-1. CMW shows significant promise as a solar evaporator.
Green conversion of red snapper fish scale-derived carbon dots and its absorption properties for solar thermal desalination Pandara, Dolfie Paulus; Tamuntuan, Gerald Hendrik; Bobanto, Maria Daurina; Ferdy, Ferdy
International Journal of Advances in Applied Sciences Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v13.i1.pp84-92

Abstract

Fisheries wastes have been used as precursors for the synthesis of carbon dots (CDs). These wastes are often converted using hydrothermal methods which require high temperature and pressure, leading to high production costs, especially for large-scale production. This study aims to innovate a low-cost synthesis method with the potential for large-scale production. Green conversion of CDs from red snapper fish scale waste was carried out using a combination of immersion method and ultrasonic wave treatment. The results showed that the products had an absorption peak at a wavelength of 404 nm and an energy bandgap of 2.7 eV. Excitation at 404 nm was associated with non-bonding n orbital to antibonding orbital ?* electronic transitions due to the presence of free electron pairs and related with carbon-nitrogen (C-N) bonds. The 2.7 eV energy bandgap was associated with the state of amine groups containing free electron pairs located on the surface of CDs as well as blue light emission at a wavelength of 460 nm when CDs were illuminated with ultraviolet light. Red snapper fish scale-derived CDs showed fluorescence characteristics and the presence of nitrogen elements, making them potential photothermal materials for solar-powered seawater desalination processes.