Claim Missing Document
Check
Articles

Found 13 Documents
Search

Mesin Pengering Hasil Pertanian Bertenaga Hybrid dan Portabel pada Pemukiman Terpencil di Desa Broto, Kecamatan Slahung, Ponorogo, Jawa Timur Al Kindhi, Berlian; Aliffianto, Lutfir Rahman; Wicaksono, Ilham Agung; Farid, Imam Wahyudi; Adhim, Fauzi Imaduddin; Priambodo, Joko; Khothib, Abdurrohman Al; Khatulistiwa, Savero Janus; Prakoso, Reno Radix; Brillianto, Muhammad Rakha; Nasrulloh, Fikri Ahmad Dwi; Ghiffari, Muhammad Ilham; Utama, Harris Fikri Satria; Pramudhita, Alfian Samudra
Sewagati Vol 8 No 3 (2024)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j26139960.v8i3.807

Abstract

Desa Broto, Kecamatan Slahung, Kabupaten Ponorogo merupakan salah satu desa yang terletak di ujung paling selatan perbatasan antara Ponorogo dan Pacitan, Jawa Timur. Lokasinya yang berada di pegunungan dan jauh dari pusat kota menjadikan petani adalah mata pencaharian utama penduduk disana. Pada saat panen padi, untuk memisahkan biji padi dari sekamnya harus dijemur dan dikeringkan terlebih dahulu. Selama ini proses penjemuran beras dilakukan secara manual sehingga memakan banyak waktu dan tenaga. Selain itu,cuaca di pegunungan tidak menentu, terkadang sinar matahari tertutup kabut walaupun di musim panas, mengakibatkan proses pengeringan beras menjadi lebih lama. Oleh karena itu kami mengusulkan desain alat pengering beras dan produk pertanian lainnya dengan tenaga hybrid dan portable. Mesin pengering yang kami usulkan memiliki sumber energi dari listrik PLN maupun listrik dari tenaga surya. Dengan adanya penyimpanan energi dari tenaga surya ke dalam baterai, alat yang diusulkan menjadi mudah di mobilisasi ke area-area sawah tanpa perlu memikirkan sumber listrik. Melalui pemanfaatan mesin pengering bertenaga hybrid ini, hasil padi kering di Desa Broto menjadi 3-5% lebih banyak dibandingkan pengeringan cara manual dengan perhitungan seluruh hasil panen dan penambahan satu mesin tenaga hybrid.
Monte Carlo method at the 24 game and its application for mathematics education Fitrianawati, Meita; Aliansyah, Zulhaj; Peni, Nur Robiah Nofikusumawati; Farid, Imam Wahyudi; Hakim, Lukman
Journal of Honai Math Vol. 5 No. 2 (2022): Journal of Honai Math
Publisher : Universitas Papua

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30862/jhm.v5i2.250

Abstract

Students often find mathematics a challenging subject and turn it into a scourge for them. Game-based learning, such as “24-card game”, help engage students in a self-paced and fun learning process and thus may overcome students’ math anxiety and promote mental math skills. This research aims to examine how the 24-card game works using the Monte Carlo method and the possibility to overcome students' mathematics anxiety. The meta-analysis method was used to explain Monte Carlo’s simulation to solve the solution for all possible combinations of cards in the game and respectively assign difficulty levels. The student's proficiency level was evaluated based on the divergence value in the number of guesses required to solve the dealt combination at 87% to show full proficiency. The evaluation could also show the math difficulty of advanced operations, such as fractions and grouping games. This game is more efficient in developing students' mental math skills compared to a conventional and rigidly structured classroom lecture.
Vibration Classification Of Intact And Cracked Brick Materials Using Fast Fourier Transform–Extreme Learning Machine For Structural Damage Early Detection Khoiri, Mohamad; Farid, Imam Wahyudi; Priambodo, Joko; Rahayu, Lucky Putri; Mahira, Balqis
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.4997

Abstract

Structural damage in buildings is often initiated by small cracks in lightweight brick elements, which, if undetected, may compromise structural safety. This study developed a vibration-based classification system using the ADXL345 accelerometer, Fast Fourier Transform (FFT), and Extreme Learning Machine (ELM) for early detection of such damage. Vibration data were collected along three axes (X, Y, and Z) with excitation frequencies ranging from 10–50 Hz. FFT analysis revealed clear distinctions between intact and cracked bricks, where cracked samples exhibited higher amplitudes and multiple resonance peaks. These frequency-domain features were then processed by ELM classifier. ELM achieved high computational efficiency and demonstrated strong predictive capability, correctly classifying 7,855 intact and 4,548 cracked samples. However, it also produced 1,879 false positives and 5,100 false negatives, resulting in an RMSE of 0.548. While the model proved more accurate in identifying intact bricks, its sensitivity to crack detection remains a challenge. Overall, FFT–ELM framework shows promising potential as a fast, non-destructive, and scalable approach for structural health monitoring, with further refinements needed to improve detection accuracy of damaged materials.