Claim Missing Document
Check
Articles

Found 23 Documents
Search

Prediksi Kebutuhan Data Mahasiswa Untuk Kuliah Daring Kondisi Covid-19 Di Jurusan Teknik Elektro Universitas Mataram: Prediction of Student Data Needs for Online Lectures Covid-19 Conditions in the Department of Electrical Engineering, University of Mataram Made Sutha yadnya; Ni Luh Sinar Ayu Ratna Dewi; Sudi Maryanto Al Sasongko; Rosmaliati Rosmaliati; Abdulah Zainuddin
JURNAL SAINS TEKNOLOGI & LINGKUNGAN Vol. 7 No. 2 (2021): JURNAL SAINS TEKNOLOGI & LINGKUNGAN
Publisher : LPPM Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jstl.v7i2.284

Abstract

In the covid-19 condition, lectures at the Department of Electrical Engineering, Mataram University changed from a face-to-face process to via the Internet. T here will be a very sharp increase in demand. The use of data initially provided by the University of Mataram using a free hotspot network turned into a burden on lecturers and students. This research was conducted by sampling, general compulsory subjects, compulsory electrical courses, and compulsory expertise subjects. The distribution of variations of students domiciled in the City of Mataram and the other place coverage Lombok Island, within NTB and outside NTB. The results obtained are as follows: students who still survive in Mataram City are 17% (10.5 GB), Lombok Island 48% (8.1 GB), outside Lonbok Island 27% (4.8 GB), and outside NTB 8% (15 GB). Keyword : covid-19; lectures; online
Investigasi Tingkat Kerawanan Gedung Dalam Rangka Implementasi Mitigasi Gempa Bumi di Fakultas Teknik Universitas Mataram Teti Zubaidah; Rosmaliati Rosmaliati; Cipta Ramadhani; Dwi Ratnasari; Made Sutha Yadnya; Bulkis Kanata; Paniran Paniran; Abdullah Zainuddin; Kenya Damayanti Priyatna
Jurnal Gema Ngabdi Vol. 3 No. 3 (2021): JURNAL GEMA NGABDI
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jgn.v3i3.160

Abstract

After the 2018 Lombok Earthquake, buildings at the Faculty of Engineering, University of Mataram (FT Unram) were severely damaged and there was no comprehensive treatment. Facilities for earthquake mitigation are still minimal and if available they are not designed and placed properly. Some parts of the building have been renovated but appear unfinished, while there were new constructions that have not been investigated regarding their suitability with earthquake mitigation. Anticipating re-occurrence of a major earthquake in Lombok, it is very necessary to implement earthquake mitigation at FT Unram. In this paper, results of vulnerability investigation of each building will be presented including number, type, and level of damages as well as their locations and detailed documentation of each point of damages in form of pictures and photos/videos. Through this activity vulnerabilities of each building can be identified comprehensively, so that appropriate treatments can be carried out, and the safest evacuation route can be planned as well.
ANALISIS UNJUK KERJA SISTEM FOTOVOLTAIK ON-GRID PADA PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) GILI TRAWANGAN Eka Meilia Suryanti; Rosmaliati Rosmaliati; Ida Bagus Fery Citarsa
DIELEKTRIKA Vol 1 No 2 (2014): DIELEKTRIKA
Publisher : Jurusan Teknik Elektro Fakultas Teknik Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (371.306 KB)

Abstract

PLN (Persero) Wilayah Nusa Tenggara Barat membangun Pembangkit Listrik Tenaga Surya (PLTS) yang berukuran 200 kWp dan 400 kWp dengan sistem on-grid untuk meningkatkan kapasitas suplai sistem kelistrikan Gili Trawangan. Penelitian ini mengamati beberapa parameter yang selanjutnya digunakan untuk menganalisis unjuk kerja dan hasilnya dapat menjadi masukan bagi PT. PLN (Persero) Wilayah Nusa Tenggara Barat dalam merencanakan PLTS pada masa yang akan datang. Pada penelitian ini dilakukan pengumpulan data spesifikasi, pengukuran keluaran panel surya dan inverter, perhitungan dan analisis. Hasil perhitungan PLTS 200 kWp berdasarkan data spesifikasi didapatkan besarnya efisiensi PV (ηPV,d), efisiensi inverter (ηinv,d), efisiensi sistem (ηsys,d), hasil akhir (Yf,d) dan rasio kinerja (PRd) berturut-turut adalah 14,82%; 98,78%; 14,64%; 8,89 kWh/kWp; 88,9% dan berdasarkan hasil perhitungan data pengukuran didapatkan besarnya nilai tersebut berturut-turut adalah 12,47%; 97,61%; 12,17%; 5,13 kWh/kWp; 15,98%. Hasil perhitungan PLTS 400 kWp berdasarkan data spesifikasi didapatkan besarnya nilai tersebut pada inverter I dan inverter II berturut-turut adalah 15,76%; 99,13%; 15,62%; 8,91 kWh/kWp; 89,1% dan berdasarkan hasil perhitungan data pengukuran besarnya nilai tersebut pada inverter I dan inverter II berturut-turut adalah 10,24% dan 10,32%; 95,72% dan 94,14%; 9,80% dan 9,72%; 4,83-4,84% kWh/kWp; 15,04-15,07%. Dari hasil tersebut dapat disimpulkan bahwa hasil perhitungan berdasarkan data pengukuran lebih kecil dibandingkan data spesifikasi, dengan besar persentase perbandingan untuk masing-masing nilai berturut-turut berkisar antara 52,60-88,53%; 94,97-98,82%; 50,45-57,09%; 34,68-59,84% dan 16,88-25,25%.
Algoritma Deep Learning-LSTM untuk Memprediksi Umur Transformator Ayu Ahadi Ningrum; Iwan Syarif; Agus Indra Gunawan; Edi Satriyanto; Rosmaliati Muchtar
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 3: Juni 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021834587

Abstract

Kualitas dan ketersediaan pasokan listrik menjadi hal yang sangat penting. Kegagalan pada transformator menyebabkan pemadaman listrik yang dapat menurunkan kualitas layanan kepada pelanggan. Oleh karena itu, pengetahuan tentang umur transformator sangat penting untuk menghindari terjadinya kerusakan transformator secara mendadak yang dapat mengurangi kualitas layanan pada pelanggan. Penelitian ini bertujuan untuk mengembangkan aplikasi yang dapat memprediksi umur transformator secara akurat menggunakan metode Deep Learning-LSTM. LSTM adalah metode yang dapat digunakan untuk mempelajari suatu pola pada data deret waktu. Data yang digunakan dalam penelitian ini bersumber dari 25 unit transformator yang meliputi data dari sensor arus, tegangan, dan suhu. Analisis performa yang digunakan untuk mengukur kinerja LSTM adalah Root Mean Squared Error (RMSE) dan Squared Correlation (SC). Selain LSTM, penelitian ini juga menerapkan algoritma Multilayer Perceptron, Linear Regression, dan Gradient Boosting Regressor sebagai algoritma pembanding.  Hasil eksperimen menunjukkan bahwa LSTM mempunyai kinerja yang sangat bagus setelah dilakukan pencarian komposisi data, seleksi fitur menggunakan algoritma KBest dan melakukan percobaan beberapa variasi parameter. Hasil penelitian menunjukkan bahwa metode Deep Learning-LSTM mempunyai kinerja yang lebih baik daripada 3 algoritma lain yaitu nilai RMSE= 0,0004 dan nilai Squared Correlation= 0,9690. AbstractThe quality and availability of the electricity supply is very important. Failures in the transformer cause power outages which can reduce the quality of service to customers. Therefore, knowledge of transformer life is very important to avoid sudden transformer damage which can reduce the quality of service to customers. This study aims to develop applications that can predict transformer life accurately using the Deep Learning-LSTM method. LSTM is a method that can be used to study a pattern in time series data. The data used in this research comes from 25 transformer units which include data from current, voltage, and temperature sensors. The performance analysis used to measure LSTM performance is Root Mean Squared Error (RMSE) and Squared Correlation (SC). Apart from LSTM, this research also applies the Multilayer Perceptron algorithm, Linear Regression, and Gradient Boosting Regressor as a comparison algorithm. The experimental results show that LSTM has a very good performance after searching for the composition of the data, selecting features using the KBest algorithm and experimenting with several parameter variations. The results showed that the Deep Learning-LSTM method had better performance than the other 3 algorithms, namely the value of RMSE = 0.0004 and the value of Squared Correlation = 0.9690.
Pengenalan Instalasi Listrik yang Aman Kepada Siswa-Siswi SMPN 7 Mataram Ni Made Seniari; Rosmaliati Rosmaliati; Supriyatna Supriyatna; Abdul Natsir; Ida Ayu Sri Adnyani; Sabar Nababan
DEDIKASI Vol 22, No 2 (2020): Jurnal Dedikasi
Publisher : Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26858/dedikasi.v22i2.16139

Abstract

Understanding of electrical installation and the use of electrical equipment that is proper and safe, has a big contribution to the safety and security around us. The introduction of safe electrical installations according to the Indonesian National Standard, namely the General Requirements for Electrical Installations (SNI: PUIL 2011) needs to be disseminated to the public from an early age. The problems were: (1) Socialization of electrical installations is less socialized to the wider community, (2) Socialization of SNI PUIL 2011 is less socialized by related parties, (3) There is no special curriculum that provides practical skills to junior high school students regarding safe electrical installations. External targets are students: (1) Can recognize the components of simple electrical installations in their homes, (2) Understand the functions and workings of installation components, (3) Understand the procedures for installing electrical installations, (4) Be able to plan installation installations electricity. The methods used were (1) lectures on understanding the importance of safe electrical installations, the functions and workings of installation components, (2) demonstrations using electrical installation module boards, (3) Questions and answers and discussions. The results achieved included students: (1) Understanding of simple electrical installations in their homes, (2) Understanding of electrical installation procedures and planning, (3) Being able to plan installations
Prediksi Sisa Umur Transformator Menggunakan Metode Backpropagation Novie Elok Setiawati; Rosmaliati Rosmaliati; Misbahul Munir; Trisna Wati; Ilmiatul Masfufiah
CYCLOTRON Vol 4, No 1 (2021): CYCLOTRON
Publisher : Universitas Muhammadiyah Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (701.234 KB) | DOI: 10.30651/cl.v4i1.6816

Abstract

Transformator distribusi adalah salah satu instrument penting dalam penyaluran listrik ke konsumen. Selain penggunaan normal, kondisi gangguan pada transformator dapat menyebabkan menurunnya umur transformator sehingga kinerja transformator tidak optimal sampai batas umur operasinya. Oleh karena itu penting sekali dilakukan menghitung sisa umur transformator. Tahapan yang dilakukan adalah menghitung sisa umur transformator menggunakan standar IEC 60076-7.  Selanjutnya dilakukan prediksi sisa umur transformator menggunakan backprogation. Parameter-parameter yang diperlukan untuk penelitian ini pembebanan dan umur transformator. Pengukuran arus transformator distribusi dilaksanakan di Surabaya Utara dengan rating 20 KV / 380-220 Volt. Nilai pembebanan transformator yang dilakukan selama 24 jam merupakan data latih dan data testing pada backpropagation. Hasil simulasi backpropagation untuk memprediksi sisa umur mendapatkan nilai rata-rata akurasi dari komposisi I sebesar 97.81 %, komposisi II sebesar 96.94%.
Pemberdayaan Masyarakat Desa Sade Dalam Kesiapan Desa Tangguh Bencana Banjir dan Tanah Longsor Made Sutha Yadnya; Lalu Muhamad Irfan; Abdullah Zainuddin; Bulkis Kanata; Teti Zubaidah; Rosmaliati Rosmaliati; Paniran Paniran
Jurnal Gema Ngabdi Vol. 4 No. 1 (2022): JURNAL GEMA NGABDI
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jgn.v4i1.233

Abstract

The Mandalika area has become an area of ​​global concern because it has a GP motorcycle racing circuit. Mandaika is geographically closely related to the 9 buffer villages. The village is Sade Village, which is a unified area that must be maintained due to the land being taken as backfill for the circuit construction area. Changes in land use are a threat that is already in sight due to the land becoming barren, it is necessary to provide knowledge about the dangers of disasters such as floods and landslides due to extreme weather. The obligation to provide knowledge on the dangers of flooding and landslides has been carried out with the help of funds from the DPP SPP Electrical Engineering, University of Mataram, through the Community Service program carried out by the research group on Electromagnetic Technology and Environmental Conservation for Humanity
Pengenalan Pemasangan Sistem Proteksi Petir (SPP) Eksternal Pada Gedung di Kota Mataram Ni Made Seniari; Rosmaliati Rosmaliati; Supriyatna Supriyatna; Abdul Natsir; Ida Ayu Sri Adnyani; Sabar Nababan
Seminar Nasional Pengabdian Kepada Masyarakat PROSIDING EDISI 6: SEMNAS 2020
Publisher : Seminar Nasional Pengabdian Kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (860.778 KB)

Abstract

Abstract. Indonesia is located in the tropics with an Iso Kraunic Level (IKL) of 200 strikes / km2 / year, with a relatively large risk of loss. The introduction of planning and installing a lightning protection system (SPP) was carried out for young people around the Mataram University Campus environment and was also attended by students and alumni of the Mataram University electrical engineering department. The selection of the topic and target of this activity was due to problems including (1) Lack of public understanding of the lightning phenomenon, (2) There has been no attempt by related parties to socialize ways to reduce the risk of lightning strikes, (3) Lack of public understanding of the procedure and planning for system installation external lightning protection (SPP). The external targets were: (1) Increase public understanding of the concept of lightning, (2) Increase community understanding of the impact and risk of lightning strikes, (3) Provide knowledge on how to reduce losses due to lightning strikes, (4) Provide skills in planning the installation of external SPP. The methods used were: lectures, demonstrations, question and answer, and discussion. The results achieved include: (1) Understanding of the phenomenon of lightning, (2) Understanding of the impact of direct and indirect lightning strikes, (3) Can plan the installation of external lightning installations.
Classification Method in Fault Diagnosis of Oil-Immersed Power Transformers by Considering Dissolved Gas Analysis Rosmaliati; Bernandus Anggo Seno Aji; Isa Hafidz; Ardyono Priyadi; Mauridhi Hery Purnomo
EMITTER International Journal of Engineering Technology Vol 10 No 2 (2022)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v10i2.702

Abstract

Fault detection in the incipient stage is necessary to avoid hazardous operating conditions and reduce outage rates in transformers. Fault-detected dissolved gas analysis is widely used to detect incipient faults in oil-immersed transformers. This paper proposes fault diagnosis transformers using an artificial neural network based on classification techniques. Data on the condition of transformer oil is assessed for dissolved gas analysis to measure the dissolved gas concentration in the transformer oil. This type of disturbance can affect the gas concentration in the transformer oil. Fault diagnosis is implemented, and fault reference is provided. The result of the NN method is more accurate than the Tree and Random Forest method, with CA and AUC values 0.800 and 0.913. This classification approach is expected to help fault diagnostics in power transformers.
Penerapan Penjejak Titik Daya Maksimum Pada Plts Skala Kecil di SMK Negeri 1 Pringgabaya Jurnal Pepadu; Abdul Natsir; Supriyatna Supriyatna; Ida Ayu Sri Adnyani; Ni Made Seniari; Sabar Nababan; Rosmaliati Rosmaliati
Jurnal Pepadu Vol 2 No 1 (2021): Jurnal PEPADU
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/pepadu.v2i1.2160

Abstract

ABTRAKDalam kebijakan energi nasional, pemerintah terus berkomitmen untuk melakukan pengembangan danmeningkatkan pemanfaatan pembangkit energi terbarukan hingga 23 persen pada tahun 2025. Saat ini,potensi energi terbarukan di Indonesia belum dimanfaatkan dengan optimal. Hal ini terlihat dari potensienergi terbarukan Indonesia mencapai kira-kira 400 GW, yang terealisasi pemanfaatannya hanya 32 GWatau sekitar 8 % di akhir tahun 2019. Kontroler pengisi surya atau solar charge controller (SCC)merupakan komponen elektronik daya yang digunakan di PLTS untuk mengatur pengisian bateraidengan menggunakan modul fotovoltaik (PV) agar menjadi lebih optimal. Penjejak titik dayamaksimum atau Maximum Power Point Tracking (MPPT) adalah sebuah algoritma atau teknik yangdigunakan oleh kontroler pengisi untuk melacak dan mendapatkan nilai daya maksimum dari modul PVdalam kondisi tertentu. Kegiatan pengabdian kepada masyarakat ini dilakukan untuk merancang danmenerapkan MPPT pada kontroler pengisi PLTS yang berlokasi di SMKN 1 Pringgabaya. Hasilpengujian dan pengukuran data menunjukkan bahwa daya keluaran yang dihasilkan modul PV yangmenggunakan MPPT relatif lebih besar jika dibandingkan dengan daya yang dihasilkan modul PV tanpamenggunakan MPPT. Hasil pengukuran tertinggi ditunjukkan pada kondisi intensitas radiasi suryasebesar 704,4 Watt/m2, modul PV dengan menggunakan MPPT dan tanpa MPPT yang masing-masingmenghasilkan daya sebesar 52,60 Wp dan 38,04 Wp.
Co-Authors A'yunin, Intan Qurratun A. Sjamsjiar Rachman Abdul Natsir Abdulah Zainuddin Abdullah Zainuddin Abdullah Zainuddin Abdullah Zainuddin Adi Darmawan Agung Budi Muljono Agus Indra Gunawan Agustiansyah, Muhammad Rizki Al Aqad, Yuniar Rizki Rahmawati Amara, Nadya Ardyono Priyadi Asror, Hazinatul Ayu Ahadi Ningrum Az-Zahra, Annisa Bernandus Anggo Seno Aji Bulkis Kanata Bulkis Kanata Bulkis Kanata Bulkis Kanata Cipta Ramadhani Derajat, Dirga Dama Dwi Ratnasari Dwi Ratnasari Dzulfikar Ats Tsauri Edi Satriyanto Eka Meilia Suryanti Geby Harlia Tri Putri Hakim, Muhamad Shaufil Hamdani, Muhammad Ananda Rizki Hazi, Khaerul Hening, Beta Tiva Ratu Ida Ayu Sri Adnyani Ida Bagus Fery Citarsa Ilmiatul Masfufiah Imam Wahyudi Farid Intan Qurratun A'yunin Isa Hafidz iwan Syarif Jurnal Pepadu Kenya Damayanti Priyatna Khaerunnisa Khaerunnisa, Khaerunnisa Lalu Muhamad Irfan Made Sutha Yadnya Majdi, Shafwatul Maulinda, Ade Azahra Mauridhi Hery Purnomo Misbahuddin, Misbahuddin Misbahul Munir Muhammad Azmi, Muhammad Muhammad Fajrin Akbar Nababan, Sabar Natsir, Abdul Ni Luh Sinar Ayu Ratna Dewi Ni Made Seniari Ni Made Seniari Novie Elok Setiawati Nur Fitratunnisa Paniran Paniran Puspita, Intan Imda Putra, Muhammad Septian Dwi Putri, Aida Musyarrifah Hasri Putri, Andi Nirmala Ramdani, M. Rosyantita, Tania Tri Rousanfikr, Sava Arcadia Sabar Nababan Sani, Nabila Aulia Sari, Ainayya Amalia Sevyanto, Yusril Bagas Sudi Maryanto Al Sasongko Suharyadi, Farhan Ahmad Supriyatna Supriyatna Susanto, Oki Novian Tania Tri Rosyantita Teti Zubaidah Teti Zubaidah Teti Zubaidah Teti Zubaidah Tri Putri, Geby Harlia Trisna Wati Yeni Rahmawati, Yeni Zainuddin, Abdullah