Claim Missing Document
Check
Articles

Found 3 Documents
Search

Implementasi Naïve Bayes untuk Memprediksi Tingkat Kunjungan Pelanggan Menggunakan Algoritma Naïve Bayes Nazwa Adelia Putri; Zihan Maharani; Ilona Dwi Shelvani; Harly Okprana
Journal of Informatics, Electrical and Electronics Engineering Vol. 5 No. 1 (2025): September 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/jieee.v5i1.2474

Abstract

This study aims to implement the Naive Bayes algorithm in predicting customer visit rates at Kyemoona Kitchen by utilizing available historical data. With the development of digital technology, data analysis has become an important aspect in supporting business decision making. However, manual analysis of complex and diverse data can be challenging. Therefore, a machine learning-based approach, specifically Naive Bayes, is used to explore patterns in big data and generate accurate predictions. In this study, the data collected includes variables such as visit time, promotion type, weather conditions, holidays, and other factors. The Naive Bayes model achieved an accuracy of 85.6%, with other evaluation metrics such as precision of 82.4%, recall of 84.2%, and F1-score of 83.3%. The results show that this algorithm can identify significant factors, such as promotions and weather conditions, that affect customer visits. This study not only provides practical insights for Kyemoona Kitchen in planning data-driven operational strategies, but also aims to inspire other small and medium-sized enterprises (SMEs) to adopt similar analytical technologies. However, this study has limitations, such as dependence on data quality, which can affect the accuracy of the model. Therefore, it is recommended that future research combine Naive Bayes with other algorithms and use larger datasets for more reliable results.
Workshop Pemanfaatan AI untuk Meningkatkan Literasi Digital Guru-Guru SMK dalam Proses Pembelajaran di Sekolah Achmad Daengs GS; Ni Luh Wiwik Sri Rahayu Ginantra; Teuku Afriliansyah; Anjar Wanto; Harly Okprana
PaKMas: Jurnal Pengabdian Kepada Masyarakat Vol 4 No 1 (2024): Mei 2024
Publisher : Yayasan Pendidikan Penelitian Pengabdian Algero

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54259/pakmas.v4i1.2838

Abstract

This activity aims to equip UISU Siantar Private Vocational School teachers with knowledge and skills in utilizing Artificial Intelligence (AI) to increase learning effectiveness. This activity was carried out over two days with various sessions, including basic AI theory, the use of AI applications in learning, and direct practice in implementing AI in the classroom. The activity focuses on implementing AI workshops to increase vocational school teachers' digital literacy, especially at UISU Siantar Private Vocational School. This program is driven by rapid technological developments and the need to improve the quality of education through the integration of advanced technology, as well as equipping vocational school teachers with knowledge and skills in utilizing AI for various aspects of learning, including curriculum design, student evaluation, and classroom management. The team delivered the activity workshop in 2 ways, face-to-face and virtual, via the Zoom application. A pre-test and post-test were carried out on participants to measure the workshop's effectiveness. The average pre-test score was 60, while the average post-test score increased to 71.9. The analysis results show a significant increase in the level of teacher understanding. This increase indicates that the workshop successfully increased the digital literacy of vocational school teachers so that they are better prepared to integrate AI technology into the learning process at school.
Sistem Pendukung Keputusan Dalam Pemilihan Pasta Gigi Terbaik untuk Gigi sensitif Menggunakan Metode Borda Renaldi Ade Reza; Salsabila Putri; Dimas Pradinanto; Siti Zulhijja; Harly Okprana
Journal of Computing and Informatics Research Vol 4 No 3 (2025): July 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/comforch.v4i3.2059

Abstract

Gigi sensitif menjadi permasalahan kesehatan oral yang cukup biasa terjadi di masyarakat. Dengan beragamnya produk pasta gigi di pasaran, konsumen seringkali kesulitan dalam memilih produk yang paling efektif. Penelitian ini memiliki tujuan guna mengembangkan suatu Sistem Pendukung Keputusan (SPK) yang mampu membantu konsumen membuat pilihan yang lebih informatif. Metode Borda dipilih sebagai metode pengambilan keputusan karena kemampuannya dalam mengolah data kualitatif dan kuantitatif secara simultan. Beberapa kriteria yang akan dipertimbangkan dalam SPK ini meliputi efektivitas produk dalam meredakan nyeri, kandungan potassium nitrate, harga, dan testimoni pengguna.Selain itu, metode Borda memungkinkan penyusunan peringkat yang mencerminkan preferensi konsumen berdasarkan data dari berbagai sumber. SPK ini diharapkan dapat menjadi alat yang praktis bagi konsumen dalam memilih pasta gigi yang sesuai dengan kebutuhan mereka. Dengan memanfaatkan data yang valid dan terstruktur, sistem ini juga bertujuan untuk meningkatkan kesadaran konsumen terhadap faktor-faktor penting dalam memilih produk kesehatan oral. Penelitian ini tidak hanya bermanfaat bagi konsumen, tetapi juga bagi produsen untuk lebih memahami kebutuhan pasar. Hasil dari pengembangan SPK ini diharapkan mampu memberikan kontribusi signifikan dalam membantu pengambilan keputusan yang lebih rasional dan efektif.