Claim Missing Document
Check
Articles

Found 3 Documents
Search

A Review of the Ethno-dentistry Activities of Calotropis gigantea Ningsih, Diana Setya; Celik, Ismail; Abas, Abdul Hawil; Bachtiar, Boy Muhclis; Kemala, Pati; Idroes, Ghazi Mauer; Maulydia, Nur Balqis
Malacca Pharmaceutics Vol. 1 No. 1 (2023): June 2023
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/mp.v1i1.31

Abstract

Calotropis gigantea is a medicinal herb that thrives in arid climates. All parts of this plant are rich in secondary metabolites, which are very beneficial for health. Phytochemicals of this plant include flavonoid, alkaloids, steroids, cardiac glycosides, and terpenoids, which have a wide range of pharmacological effects. The potential of metabolit compound from C. gigantea can be used in dental treatment. This review describes the potential use of C. gigantea in ethno-dentistry, specifically as anti-caries, soft tissue inflammation (periodontitis and gingivitis), degenerative diseases (tumor/cancer), and wound healing. This review provides general perspectives and basic literature on the use of C. gigantea in the field of etno-dentistry.
A network pharmacology approach to elucidate the anti-inflammatory and antioxidant effects of bitter leaf (Vernonia amygdalina Del.) Sailah, Illah; Tallei, Trina E.; Safitri, Linda; Tamala, Yulianida; Halimatushadyah, Ernie; Ekatanti, Dewi; Maulydia, Nur B.; Celik, Ismail
Narra J Vol. 4 No. 3 (2024): December 2024
Publisher : Narra Sains Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52225/narra.v4i3.1016

Abstract

The therapeutic potential of bitter leaf (Vernonia amygdalina Del.) has been established both empirically and in various scientific investigations. However, the molecular pathways related to its possible anti-inflammatory and antioxidant properties remain unclear. Therefore, the aim of this study was to elucidate the molecular interactions between bitter leaf's bioactive compounds and cellular targets involved in these activities. The compounds in bitter leaf were identified using gas chromatography-mass spectrometry (GC-MS) analysis, and subsequently, a network pharmacology approach was employed together with molecular docking and dynamics simulations. Acetonitrile (4.5%) and dimethylamine (4.972%) were the most prevalent compounds among the 38 identified by the GC-MS analysis of bitter leaf extract. The proto-oncogene tyrosine-protein kinase (SRC) demonstrated significant connectivity within the antioxidant network, highlighting its pivotal role in facilitating inter-protein communication. It also exhibited strategic positioning in anti-inflammatory mechanisms based on closeness centrality (0.385). The enrichment analysis suggested multifaceted mechanisms of bitter leaf compounds, including transcriptional regulation and diverse cellular targeting, indicating broad antioxidant and anti-inflammatory effects. Eicosapentaenoyl ethanolamide (EPEA) displayed strong interactions with multiple proteins, including SRC (-7.17 kcal/mol) and CYP3A4 (-6.88 kcal/mol). Moreover, EPEA demonstrated to form a stable interaction with SRC during a 100 ns simulation. In conclusion, the computational simulations revealed that the hypothetical antioxidant and anti-inflammatory actions of bitter leaf compounds were achieved by specifically targeting SRC. However, confirmation using either in vitro or in vivo techniques is necessary.
Appraisal of Antioxidant Potential in Broccoli Microgreens under Different Drying Techniques Utilizing In Vitro and in Silico Methods Tallei, Trina Ekawati; Wungouw, Herlina Ineke Surjane; Kepel, Billy Johnson; Fatimawali, Fatimawali; Celik, Ismail; Niode, Nurdjannah Jane; Barasarathi , Jayanthi
Malacca Pharmaceutics Vol. 3 No. 1 (2025): March 2025
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/mp.v3i1.259

Abstract

Broccoli microgreens, rich in bioactive compounds, offer health benefits aligned with SDG 3: “Good Health and Well-Being.” Their antioxidants combat oxidative stress tied to chronic diseases, but drying can affect their activity. This study assessed the antioxidant capacities of fresh, microwave-dried, and air-fryer-dried broccoli microgreens using in vitro (DPPH assay) and in silico (molecular docking and dynamics) methods. The microgreens were cultivated under controlled conditions and dried using microwave and air-fryer techniques. Antioxidant activity was evaluated using the DPPH assay using ethanolic extracts. The bioactive compounds of fresh microgreens, detected through GC-MS, were analyzed in silico to evaluate their interactions with the target proteins CYP2C9 and NOX2. The findings revealed that air-fryer-dried microgreens demonstrated the highest DPPH activity, followed by fresh microgreens, while microwave-dried samples exhibited the lowest activity. GC-MS analysis of fresh samples revealed the presence of various compounds, including acids, ketones, sulfides, heterocycles, alcohols, esters, aromatic compounds, phthalate ester, and aldehydes. Molecular docking revealed strong interactions of certain compounds in fresh samples and CYP2C9 and NOX2, suggesting therapeutic potential against oxidative stress. Molecular dynamics simulations (MDS) showed stable binding for the CYP2C9-Methyl myristate complex, while the NOX-(Z)-1,2-Diphenylethene complex displayed weaker stability. In conclusion, broccoli microgreens show potential in mitigating oxidative stress, with air-fryer drying slightly enhancing their antioxidant activity. The antioxidant capacity of fresh microgreens is comparable to that of air-fryer-dried microgreens. In silico analyses demonstrate stable interactions between compounds in fresh microgreens and key proteins implicated in oxidative stress.