Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancement in thermal stability and surface properties of LiFePO4/VFLG composite prepared via sol-gel route Amri, Amun; Bertilsya Hendri, Yola; Sunarno; Dwi Setyo Pambudi, Yoyok; Assylzhan, Mazhibayev; Elmira, Kambarova; Ain, Khusnul; Jumbri, Khairulazhar; Tao Jiang, Zhong; Yang, Chun-Chen
Communications in Science and Technology Vol 10 No 1 (2025)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.10.1.2025.1667

Abstract

Thermal and surface properties of LiFePO4/very-few-layer graphene (LiFePO4/VFLG) composite manufactured through the sol-gel route have been researched for lithium-ion battery cathode application. VFLG was acquired from a facile, cost-effective, and environmentally benign fluid dynamic shear exfoliation process. The composites were characterized through thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), field-emission scanning electron microscopy (FESEM) interlinked with energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and Braneur-Emmett-Teller (BET) analysis. The TGA-DSC results showed that the integration of VFLG could enhance the thermal stability of the composite by inhibiting oxygen diffusion on the LiFePO4 surface. FESEM-EDX analysis, meanwhile, confirmed the homogeneously distributed VFLG in the composites. TEM results revealed that the average particle sizes of the composites decreased by about 21.2% compared to the bare LiFePO4. TEM and HRTEM results confirmed an intimate contact between VFLG intimately and LiFePO4 particles via plane-to-point contact, contributing to the control and reduction of particle size. Furthermore, physisorption via BET analysis revealed that incorporating VFLG provided a wider distribution of mesopores and increased pore diameter and pore volume by 128.7% and 656.3%, respectively, compared to sole LiFePO4. These significant improvements were related to the flexibility and ability of a thin layer of VFLG to limit the growth of LiFePO4 particles. This approach offers a promising strategy to enhance the thermal stability and surface properties of lithium-ion battery cathodes.
Experimental and DFT investigation of LiFePO₄/graphene composites prepared via shear exfoliation route Amri, Amun; Mawaddah, Mawaddah; Alfatlian, Alfatlian; Sunarno, Sunarno; Murdiya, Fri; Assylzhan, Mazhibayev; Jumbri, Khairulazhar; Altarawneh, Mohammednoor; Yang, Chun-Chen; Saputro, Sulistyo; Rahman, M Mahbubur
International Journal of Renewable Energy Development Vol 15, No 2 (2026): March 2026
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2026.61976

Abstract

The performance of LiFePO₄ (LFP) cathodes was successfully enhanced by incorporating two types of graphene obtained through green and low-cost liquid shear exfoliation processes. Commercial LFP was combined with few-layer graphene (FLG) and very few-layer graphene (VFLG), with compositions ranging from 0-4 wt.%. LFP, LFP/FLG, and LFP/VFLG, were characterized using electrochemical impedance spectroscopy (EIS), charge–discharge (CD), XRD, FTIR, and FESEM–EDX. Density functional theory (DFT) calculations were further employed to probe the electronic structure of LFP and an idealized LFP(001)/pristine-graphene interface as a baseline model for interfacial electronic coupling. DFT indicated interfacial charge redistribution and the emergence of C-2p π-derived states near the Fermi level, resulting in bandgap narrowing relative to pristine LFP and suggesting an additional electronic percolation pathway at the interface. Experimentally, EIS showed that VFLG reduced charge-transfer resistance and increased effective electrochemical conductivity, while FLG addition was associated with improved interfacial charge-transfer behavior inferred from EIS. CD tests at 0.5 C showed that the 4 wt.% FLG and 4 wt.% VFLG electrodes delivered the highest specific capacities of 29.98 mAh/g and 44.66 mAh/g, corresponding to increases of 81.9% and 170.5% compared to bare LFP. XRD and FTIR confirmed that LFP phase integrity was maintained, and FESEM–EDX revealed a uniform particle distribution with well-dispersed graphene networks. Overall, these results demonstrated that shear-exfoliated graphene effectively improved electronic connectivity and charge-transfer behavior in LFP cathodes, supported by consistent electrochemical measurements and electronic-structure insights from DFT.