cover
Contact Name
Yuhefizar
Contact Email
jurnal.resti@gmail.com
Phone
+628126777956
Journal Mail Official
ephi.lintau@gmail.com
Editorial Address
Politeknik Negeri Padang, Kampus Limau Manis, Padang, Indonesia.
Location
,
INDONESIA
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
ISSN : 25800760     EISSN : 25800760     DOI : https://doi.org/10.29207/resti.v2i3.606
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat menyebarluaskan ilmu pengetahuan hasil dari penelitian dan pemikiran untuk pengabdian pada Masyarakat luas dan sebagai sumber referensi akademisi di bidang Teknologi dan Informasi. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) menerima artikel ilmiah dengan lingkup penelitian pada: Rekayasa Perangkat Lunak Rekayasa Perangkat Keras Keamanan Informasi Rekayasa Sistem Sistem Pakar Sistem Penunjang Keputusan Data Mining Sistem Kecerdasan Buatan/Artificial Intelligent System Jaringan Komputer Teknik Komputer Pengolahan Citra Algoritma Genetik Sistem Informasi Business Intelligence and Knowledge Management Database System Big Data Internet of Things Enterprise Computing Machine Learning Topik kajian lainnya yang relevan
Articles 1,046 Documents
Pengenalan Tulisan Tangan Aksara Bali Menggunakan Faster R-CNN Pratama, Alif Adwitiya; Sulistiyo, Mahmud Dwi; Ihsan, Aditya Firman
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 6 (2023): December 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i6.5176

Abstract

In Balinese culture, the ability to read Balinese script is one of the challenges young generations face. Advances in machine learning have proposed handwriting detection systems using both traditional and deep learning models. However, the traditional approach is usually impractical and is prone to inaccurate identification results. Convolutional neural network (CNN)-based models integrate feature extraction and classification into an end-to-end pipeline to increase performance. This research proposes that recognizing characters through an object detection approach makes an end-to-end process of localizing and classifying several characters simultaneously using the Faster R-CNN. Four CNN models, including ResNet-50, ResNet-101, ResNet-152, and Inception ResNet V2, were tested to detect 28 Balinese characters in a single form that covers 18 consonants and 10 digits using Intersection over Union (IoU) thresholds: 0.5 and 0.75. ResNet-50 and Inception ResNet V2 achieve 0.991 mAP at IoU of 0.5, while Inception ResNet V2 excels at IoU of 0.75. Further analysis showed that the class ‘nol’ had the lowest Recall due to many undetected ground truths. Meanwhile, class ‘ba’ had the lowest Precision due to its similarity to classes “ga” and “nga”. This research contributes to the experiment with Faster R-CNN in detecting handwritten Balinese scripts.
Prediksi Waktu Tanam Cabai Rawit Berdasarkan Kondisi Lingkungan Berbasis Internet of Things (IoT) Menggunakan Metode Neural Network Djaksana, Yan Mitha; Agus Buono; Sri Wahjuni; Heru Sukoco
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 6 (2023): December 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i6.5199

Abstract

In Indonesian cuisine, the red Tabasco pepper holds a significant place as a commonly used ingredient. However, the cultivation of this chili variety is not without its challenges, primarily due to the volatile nature of the chili prices. Farmers often struggle with the critical decision of when to plant Tabasco peppers to optimize their yields and income. Understanding the complexities of this decision-making process in the context of varying environmental conditions is crucial. Thanks to recent advances in Internet of Things (IoT) technology, innovative systems have emerged to address these challenges.This study focuses on the development of an IoT-based solution aimed at helping farmers in precisely determining the optimal planting time for Tabasco pepper. It uses five key criteria—average temperature (°C), average humidity (%), rainfall (mm), length of sunlight (hours) and groundwater usage data (m3) to make data-driven planting decisions. The urgent need for such a system becomes evident when considering the unpredictability of climate patterns and their direct impact on crop outcomes. Using historical data from 2019, obtained from the Jakarta Provincial Government Open Data DKI, and climate data from the Meteorological Agency, Climatology, and Geophysics (BMKG), the authors have successfully developed an IoT-based prototype. This prototype employs a neural network algorithm to analyze the aforementioned criteria. The result is a reliable prediction system that boasts an impressive accuracy rate of 91.26%. By offering this level of precision in determining the ideal planting time for Tabasco pepper, the system extends invaluable support to farmers, helping them optimize their cultivation practices and navigate the uncertainties of the chili market.
Forecasting Photovoltaic Output Power Based on Environmental Parameters Using Artificial Neural Network Methods Silalahi, Desri Kristina; Agnes Christy Margareth Rumapea; Wahmisari Priharti; Bandiyah Sri Aprillia
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 6 (2023): December 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i6.5214

Abstract

Photovoltaics are systems that can convert sunlight into electrical energy. However, photovoltaic efficiency tends to be low, and its performance is affected by several environmental parameters such as dust, wind speed, humidity, temperature, and other external factors. Because there are many factors that can affect the power generated, we need a power output prediction system that can help in planning and managing as well as increasing the efficiency of photovoltaic systems. In this research, a system is designed that can predict the photovoltaic output power in the short term using the artificial neural network method or what is often called an artificial neural network. Predictions are made based on the effects of several environmental parameters such as wind speed, dust, humidity, and temperature on a 10 Wp photovoltaic system. Performance data for 7 days is used as a dataset and then processed using ANN with 1 input layer, 3 hidden layers, and 1 output layer, and 3 sample epochs (10, 100, and 1000). The results of the study can predict the output of photovoltaic power for the next 4 days with an error value of Mean Square Error (MSE) of 0.0010, Mean Absolute Error (MAE) of 0.0155, Root Mean Square Error (RMSE) of 0.0229 with an increase in power reaching 0.5 to 1 watt.
Sistem Pemantauan dan Pengendalian Logistik Buah Mangga Berbasiskan Machine Learning Hardyansyah, Buyung; Heru Sukoco; Sony Hartono Wijaya
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 1 (2024): February 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i1.5226

Abstract

Fruits are highly perishable goods, which means they have a short shelf life and can pose significant challenges in trade. A long supply chain can trigger the process of fruit spoilage. The logistics environment, both internal and external, can also affect the decrease in quality of goods. One common issue facing producers is the variability in consumer demand for fruit quality. To address this problem, a machine learning-based logistics monitoring and recommendation system can be developed, utilizing the Long Short-Term Memory (LSTM) and Decision Tree algorithms. Using machine learning algorithms, the system can analyze data from devices equipped with the Internet of Things (IoT), such as temperature and humidity sensors, to identify potential issues in the supply chain and provide recommendations to optimize logistics operations. In this study, a machine learning-based monitoring system is developed to monitor the shelf life of perishable goods, with a specific focus on mango fruit. The system utilizes LSTM to predict mango ripeness and decision tree algorithms to recommend fruit ripeness. The objective is to provide producers with recommendations that optimize the logistics process for high-quality mangoes and meet the consumer demands for quality fruit. The implementation of a machine learning-based logistics monitoring and recommendation system can provide significant benefits to mango producers. Using advanced technologies, such as LSTM and Decision Tree algorithms, producers can optimize their logistics operations, improve fruit quality, reduce waste, and improve customer satisfaction.
Ekstraksi Fitur untuk Peningkatan Klasifikasi Teks Komentar Video Youtube Spam Menggunakan Deep Learning Jasmir, Jasmir; Riyadi, Willy; Jusia, Pareza Alam
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 6 (2023): December 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i6.5249

Abstract

The proposed algorithms are Bidirectional Long Short Term Memory (BiLSTM) and Conditional Random Fields (CRF) with Data Augmentation Technique (DAT). DAT integrates spam YouTube video comments into the traditional TF-IDF algorithm and generates a weighted word vector. The weighted word vector is fed into BiLSTM CRF to capture context information effectively. The result of this study is a new classification model to spam YouTube comment videos and increase the computational value of its performance. This research conducted two experiments: the first using BiLSTM CRF without DAT and the second using BiLSTM CRF with DAT. The experimental results state that the evaluation score using BiLSTM CRF with DAT shows outstanding performance in text classification, especially in spam YouTube video comment texts, with accuracy = 83.3%, precision = 83.6%, recall = 83.3%, and F-measure = 83.3%. So the combination of the BiLSTM-CRF method and the Data Augmentation Technique is very precise, so it can be used to increase the accuracy of classification texts for spam YouTube video comments
Machine Learning Analisis Klasifikasi dalam Penentuan Status Gizi Anak Yanto, Musli; Febri Hadi; Syafri Arlis
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 6 (2023): December 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i6.5278

Abstract

Malnutrition is one of the problems that occurs in children due to a lack of nutritional intake. Indonesia contributed 36%, making it the fifth country with the largest cases of malnutrition in the world. On this basis, a solution is needed to reduce the growth rate of malnutrition cases. This research aims to carry out classification analysis to determine nutritional status by optimizing machine learning (ML) performance. The ML classification analysis process will later utilize the performance of the artificial neural network (ANN) method with the Multilayer Perceptron (MLP) algorithm. ML performance can be optimized using the Pearson’s correlation (PC) method to produce optimal classification analysis patterns. This research data set uses child nutrition case data from 576 patients sourced from the M. Djamil Padang Province Regional General Hospital (RSUP). The data set is divided into 417 training data and 159 test data. On the basis of the tests that have been carried out, the performance of the PC method can provide precise and accurate analysis patterns. This analysis pattern has also been able to provide a fairly good level of accuracy, namely 95%. Not only that, this research is also able to present analysis patterns with the best ANN architectural model in classifying nutritional status. Based on the overall results, this research can be used as an alternative solution to the treatment of nutritional problems in children.
Bahasa Inggris Ahmad Saikhu; Agung Teguh Setyadi; Victor Hariadi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 6 (2023): December 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i6.5296

Abstract

For the optimization of computer networks with high bandwidth requirements, it is necessary to predict the traffic of the wireless network. Its goal is to reduce maintenance costs and improve internet services. Feature selection is a major issue in multivariate time series (MTS) spatio-temporal modeling. Another problem is the dependency between input features, time lags, and spatial factors, so an appropriate model is needed. This study aims to provide solutions to two problems. The first is to improve a feature extraction and selection process in spatio-temporal MTS data for relevant features using Detrended Partial Cross-Correlation Analysis (DPPCA) and nonredundant features associated with linear using Pearson's correlation (PC) filters and non-linear associations using Symmetrical Uncertainty (SU) and a combination of both PCSUF. The second is to develop a spatiotemporal framework model using recurrent neural networks (RNNs) to get better performance than the traditional model. These methods are combined and tested using a data set of cellular networks with one hour intervals during November in three locations. Testing the effectiveness of the feature selection technique showed that 27.6% of the total extracted features were. The forecasting model with the DPCCA-SU-RNN combination method is the best performance by having RMSE = 380.7, R2 = 97% and MAPE = 10%.
Imputation Missing Value to Overcome Sparsity Problems in The Recommendation System Sri Lestari; M. Elrico Afdila; Yan Aditiya Pratama
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 6 (2023): December 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i6.5300

Abstract

A recommendation system is a system that provides suggestions or recommendations to a product or service for its users. One of the problems encountered in the recommendation system is sparsity, namely the lack of available data for analysis, resulting in poor performance of the recommendation system because it cannot provide the proper recommendations. On this basis, this study proposes the mean method and the stochastic hot-deck method to calculate missing values to improve the quality of the recommendations. The experimental results show that the hot-deck imputation method gives better results than the mean imputation method with smaller RMSE and MAE values, namely 2,706 and 2,691.
Investigating the Impact of ReLU and Sigmoid Activation Functions on Animal Classification Using CNN Models M Mesran; Sitti Rachmawati Yahya; Fifto Nugroho; Agus Perdana Windarto
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 1 (2024): February 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i1.5367

Abstract

VGG16 is a convolutional neural network model used for image recognition. It is unique in that it only has 16 weighted layers, rather than relying on a large number of hyperparameters. It is considered one of the best vision model architectures. However, several things need to be improved to increase the accuracy of image recognition. In this context, this work proposes and investigates two ensemble CNNs using transfer learning and compares them with state-of-the-art CNN architectures. This study compares the performance of (rectified linear unit) ReLU and sigmoid activation functions on CNN models for animal classification. To choose which model to use, we tested two state-of-the-art CNN architectures: the default VGG16 with the proposed method VGG16. A dataset consisting of 2,000 images of five different animals was used. The results show that ReLU achieves a higher classification accuracy than sigmoid. The model with ReLU in fully connected and convolutional layers achieved the highest precision of 97.56% in the test dataset. The research aims to find better activation functions and identify factors that influence model performance. The dataset consists of animal images collected from Kaggle, including cats, cows, elephants, horses, and sheep. It is divided into training sets and test sets (ratio 80:20). The CNN model has two convolution layers and two fully connected layers. ReLU and sigmoid activation functions with different learning rates are used. Evaluation metrics include accuracy, precision, recall, F1 score, and test cost. ReLU outperforms sigmoid in accuracy, precision, recall, and F1 score. This study emphasizes the importance of choosing the right activation function for better classification accuracy. ReLU is identified as effective in solving the vanish-gradient problem. These findings can guide future research to improve CNN models in animal classification.
Anatomy Identification of Bamboo Stems with The Convolutional Neural Networks (CNN) Method Rustandi, Dede; Sony Hartono Wijaya; Mushthofa; Ratih Damayanti
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 1 (2024): February 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i1.5370

Abstract

It is important to note that some species of bamboo are protected and considered endangered. However, distinguishing between traded and protected bamboo species or differentiating between bamboo species for various purposes remains a challenge. This requires specialized skills to identify the type of bamboo, and currently, the process can only be carried out in the forest for bamboo that is still in clump form by experienced researchers or officers. However, a study has been conducted to develop an easier and faster method of identifying bamboo species. The study aims to create an automatic identification system for bamboo stems based on their anatomical structure (ASINABU). The bamboo identification algorithm was developed using macroscopic images of cross-sectioned bamboo stems and the research method used was the convolutional neural network (CNN). CNN was designed to identify bamboo species with images taken using a cellphone camera equipped with a lens. The final product is an Android automatic identification application that can detect bamboo species with an accuracy of 99.9%.

Page 79 of 105 | Total Record : 1046