cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota malang,
Jawa timur
INDONESIA
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Published by Universitas Brawijaya
ISSN : -     EISSN : -     DOI : -
Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian dan memberikan kontribusi yang berarti untuk meningkatkan sumber daya penelitian dalam Teknologi Informasi dan Ilmu Komputer.
Arjuna Subject : -
Articles 6,850 Documents
Pengembangan Sistem Informasi Pengelolaan Penjualan Keripik Buah Pada CV KAJEYE FOOD Dengan Metode Peramalan Permintaan Menggunakan Model Waterfall Arib Rahman Sutrisna; Niken Hendrakusma Wardani; Aditya Rachmadi
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 2 No 10 (2018): Oktober 2018
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (711.781 KB)

Abstract

CV KAJEYE FOOD is a company that engaged in fruit processing, especially chips and candied fruit that called SoKressh & Kenyil. The recap process of fruit chips sales is still done manually. It takes time and has possibility of human error that caused the error information. The company sometimes experience over-production in the fruit chips production, so it can cause harm to the company. The company needs information system that can manage the sales and can predict the demand of fruit chips in the next period. Development of information systems using waterfall method that starts from requirement analysis, design, implementation and testing. Design and implementation using structural approach (Data Flow Diagram, Entity Relationship Diagram and State Transition Diagram). Implementation of sales management information system is web-based and uses exponential smoothing and moving averages method in forecasting demand. The test results using white-box and black-box method indicate that all function of system run well according to requirement and design. Testing of forecasting method of exponential smoothing and moving averages shows that exponential smoothing method with constant 0.9 is the most accurate forecasting method, with mean absolute deviation of 924.5, mean square error of 876,752.5 and mean absolute percent error of 26.1%.
Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak Indri Monika Parapat; Muhammad Tanzil Furqon; Sutrisno Sutrisno
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 2 No 10 (2018): Oktober 2018
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (441.596 KB)

Abstract

Growth and development of children at an early age affect the child's personal ability in the future. Every child is unique, so growth and growth are different. Deviation of late child growth is known to result in long-term and difficult to repair. . Based on these problems, this research was conducted by using the sUPPmethod for the classification of child growth deviations. ELM method consists of training process as system learning and testing to obtain the result of classification. The parameters test are test of lambda, complexity, and maximal iteration. There are 90 data used in this research, which is divided into 3 classes. Classes in this study represent three types of diseases in growth and development are Down Syndrome, Autisme, dan Attention Deficit Hyperactivity Disorder (ADHD). Basically SVM algorithm is a method of linier classification, so there is kernel is used to overcome nonlinier data. The final result of this study produced the highest average accuracy on this research is 73,78% λ = 0,1, C = 0,1, itermax = 10 and also using polynomial kernel. The comparison of the result of the classification of child growth deviation with the help of psychologist shows that the system produces poor accuracy. This can be due to the small and unbalanced data used for the research.
Implementasi Algoritme Shazam untuk Mengidentifikasi Hadis dan Surah dalam Al-Quran Menggunakan Suara Bahruddin El Hayat; Imam Cholissodin; Marji Marji
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 2 No 9 (2018): September 2018
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1153.372 KB)

Abstract

For muslims, understanding Al-Qur'an and Hadis are an obligation because those two is the basic of Islam. In the learning process, a person usually will begin by memorizing the pronounciation and the surah's or hadis's name. After the person can pronounce the surah or hadis fluently, then they will continue to understand the meaning and the content of the surah or hadis. The problem is sometimes a person can forget the name of surah or hadis when another person says a verse from the surah or hadis. So, a solution is needed to handle the problem. In this research, the writer offers a solution to build a system that can identify the name of surah or hadis in Al-Qur'an by taking an input in the form of a sound file with WAV extension using Shazam algorithm. The identification process is done by doing these following actions: numeric value extraction, conversion, feature extraction, filtering and matching. The result is the name and information of the surah or hadis. The best accuracy from identifying surah and hadis from Al-Qur'an is 82% in the testing phase using a test data with 15 second duration, chunk size=4096 and range=60.
Penerapan Bot Frequently Ask Question (FAQ) FILKOM pada Jejaring Sosial Twitter Atiqo Tuzumah; Eko Sakti Pramukantoro; Heru Nurwarsito
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 11 (2017): November 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (744.562 KB)

Abstract

Twitter is one of the popular social networks where short message communications (called tweets) have attracted large numbers of users. Popularity and openness twitter structure has attracted large number of automated programs called bots. Bots is automatic programs designed to simulate conversations, either being similar like human or pure information. Pure information bot is bot that the existence intended to provide information to user. This research automatic notification is applied to reply to the questions frequently asked FILKOM coolege students about FILKOM in the form of FILKOM FAQ. FILKOM FAQs bot-based system that are applied to twitter social networks are easier to access, quicker, and interactive responses. The exchange of information that occurs between the webserver-bot system-and the users / students is done on a scheduled basis.
Diagnosis Penyakit THT Menggunakan Metode Fuzzy K-NN Afrida Djulya Ika Pratiwi; Dian Eka Ratnawati; Agus Wahyu Widodo
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 2 No 10 (2018): Oktober 2018
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (966.304 KB)

Abstract

Humans are one of the living beings that exist in the world. One of the important organs that exist in humans are the ears, nose, and throat. This causes the organs to be connected to each other and can cause the spread of infection if one of the three organs are infected. Diseases that attack ENT is still considered trivial by the community, so the public awareness to check to the doctor is still low. Therefore, to facilitate the community to making their own diagnosis of ENT disease, then made a diagnosis system ENT disease. This diagnostic system uses Fuzzy-K nearest neighbor method. The used of the Fuzzy-K nearest neighbor method occurs in some studies that using this method can get high scores. In this study using four pieces of testing, namely testing of variations in the amount of training data, testing of variations in the number of values ​​k., testing of comparison between the number data training and data testing, and cross validation testing. Based on four types of test scenarios performed using 122 data related to ENT disease, obtained results with an average rate of 99,2%.
Penerapan Algoritme Basic Theta* Pada Game Hexaconquest Ilman Naafian Firmansyah; Eriq Muhmmad Adams Jonemaro; Muhammad Aminul Akbar
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 2 No 10 (2018): Oktober 2018
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (834.881 KB)

Abstract

Nearly every Turn-based Strategy Games today have a singleplayer feature in their Game modes. If there is only one human player, then every other player must be controlled by computer. This is where AI(Artificial Intelligence) used. AI used so the Game can be played by a human player as if they play against another human. Human player can then use this feature to train their playing skill while playing against computer player before they play against another human player. Commonly used algorithm to search for most optimal way AI can use to reach their destination is A* algorithm. But A* is not always the best solution for pathfinding. In this study we try to implement Basic Theta* algorithm on a Turn-based Strategy Game called Hexaconquest. Basic Theta* algorithm performance will then be compared to Hexaconquest's original pathfinding algorithm, A*. Both algorithm frame per second, running time, and node total cost performance will be compared. From result of this study, we can conclude that Basic Theta* algorithm can give solution with shortest route, but A* can give lighter and faster solution.
Implementasi Jaringan Syaraf Tiruan Backpropagation untuk Mendiagnosis Penyakit Kulit pada Anak Rokky Septian Suhartanto; Candra Dewi; Lailil Muflikah
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 7 (2017): Juli 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (788.479 KB)

Abstract

Immune systems owned by children who are weaker than adults make children more susceptible to disease. Skin disease is one of them, this is because the skin is the sense of touch for humans. The similarity of symptoms of any skin disease makes the layman difficult to distinguish the illness in suffering whereas every type of disease has a different treatment. In this study implements artificial neural network method backpropagation to study the past data in order to diagnose skin diseases in children. The input used in the form of symptoms of all diseases amounted to 19 then represented into binary 0 and 1 where the value will be worth 1 if experiencing the symptoms and vice versa. The activation function used is sigmoid binner. The initial weights are obtained using Nguyen-Widrow which will then be done by repeatedly learning so that the result of the network that gives the correct response to the input. Based on the result of the test, the optimal parameters are 4 hidden neurons, learning rate 0.4 and epoch maximum 300000 and The results of the accuracy of the study reached 87.22% which indicates that this backpropagation method can be used in diagnosing skin diseases in children.
Implementasi Pervasive Computing Pada Sistem Monitoring Konsumsi Daya Listrik Stop Kontak Rumah Ikhwan Zulfy; Dahnial Syauqy; Sabriansyah Rizqika Akbar
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 2 No 9 (2018): September 2018
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (735.394 KB)

Abstract

Power saving consumption is necessary. The power consumption of a house can be monitored through kWh meters. The usual kWh meter monitors the overall power consumption of the house, it doesn't measure the details of the total power consumption of the home. Therefore we need to monitor the system of electric power consumption in every room of the house. Based on that requirement, an electrical power consumption of the outlet system monitoring is available in every room of the house using pervasive computing method. The system is using some devices that is a smartphone application and 2 node devices comprising NodeMCU v1.0 as the microcontroller and the current YHDT SCT-013-020 sensor. The system requires some nodes and an application device to be connected in the same network through the websocket protocol. Device node and the application are communicating through a router. The node device processes the sensor readings and then sends the data to the application. The application will scan the IP subnet mask, if the IP adresses are detected and configured on port 19105, the IP will be identified as node device. Then the application will request the sensor data to the node device and display its data to the user. After the test results are done, it will be known that the system can perform discovery with an average total time of 11156.3 ms, then it will send and display the data via the websocket protocol and the smartphone application.
Pengelompokan Lagu Berdasarkan Emosi Menggunakan Algoritma Fuzzy C-Means Muhja Mufidah Afaf Amirah; Agus Wahyu Widodo; Candra Dewi
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 12 (2017): Desember 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (622.463 KB)

Abstract

Digital music has grown dramatically in recent years. They offering musics in various type and emotion that are random. Therefore, there is a need to organize the songs, they need to somehow clusterize their files based on a specific characteristic. The purpose of such organization is to enable users to navigate to pieces of music they like, and also to give them advice and recommendation for people or music-related industries. This research proposed a clustering of songs based on their emotion using the Fuzzy c-means algorithm. Audio attributes of valence, energy, loudness, and tempo are used as features that represent the emotions of the song. The cluster of each data is determined based on their membership degree. Cluster validity index is used to evaluate the fitness of partitions produced by clustering algorithms. The algorithm is tested on different amount of data, which is 20%, 40%, 60%, 80%, and 100% data of total 150 songs. The testing result obtained a minimum error value of 0.00000001 (1x10-8). The results showed that the optimal number of clusters that are best to be used in this research is 5. While, the optimal fuzzifier value to be used in this research is 2 with the cluster validity value reaches 0.7 or 70%
Analisis dan Perbandingan Performansi File Sharing Peer-to-Peer Menggunakan Framework JXTA dan Gnutella Yoga Faodiansyah; Kasyful Amron; Eko Sakti Pramukantoro
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 2 No 10 (2018): Oktober 2018
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (398.736 KB)

Abstract

Teknologi informasi telah menjadi kebutuhan manusia dan salah satu bidang didalamnya yaitu sharing. Sharing adalah mekanisme yang dilakukan untuk berbagi resource berupa file, atau informasi lainnya kepada user lain dan bertujuan untuk memaksimalkan resource yang tersedia. Tujuan lainnya yaitu memberikan kemudahan untuk melakukan pencarian atau pembagian informasi pada user. File sharing merupakan kegiatan sharing yang banyak dilakukan dan berdasar pada arsiterktur yang digunakan dibagi menjadi dua yaitu client-server dan peer-to-peer. Muncul beberapa masalah saat arsitektur client-server digunakan yaitu salah satunya resource yang digunakan terbatas sehingga menghambat proses file sharing. Arsitektur peer-to-peer dapat menjadi solusi dari permasalahan tersebut karena pada arsitektur peer-to-peer, resource yang digunakan dapat dibagi pada setiap user yang terhubung. Mekanisme file sharing pada peer-to-peer berbeda-beda pada setiap generasi sehingga hasil kinerjanya pun berbeda. Penelitian ini dilakukan untuk mengetahui kinerja terhadap protocol yang digunakan yaitu JXTA dan Gnutella yang masing-masing pada generasi dua dan tiga untuk melakukan proses file sharing dengan trhoughput dan delay sebagai parameter. Untuk memperoleh nilai parameter dilakukan pengujian dengan melakukan proses file sharing sesuai dengan perancangan terhadap kedua protocol yang ditentukan. Hasil pengujian pada masing-masing protocol yang diperoleh kemudian dianalisis dan dibandingkan.

Page 52 of 685 | Total Record : 6850


Filter by Year

2017 2026


Filter By Issues
All Issue Vol 10 No 13 (2026): Publikasi Khusus Tahun 2026 Vol 10 No 01 (2026): Januari 2026 Vol 10 No 2 (2026): Februari 2026 Vol 9 No 13 (2025): Publikasi Khusus Tahun 2025 Vol 9 No 12 (2025): Desember 2025 Vol 9 No 11 (2025): November 2025 Vol 9 No 10 (2025): Oktober 2025 Vol 9 No 9 (2025): September 2025 Vol 9 No 8 (2025): Agustus 2025 Vol 9 No 7 (2025): Juli 2025 Vol 9 No 6 (2025): Juni 2025 Vol 9 No 5 (2025): Mei 2025 Vol 9 No 4 (2025): April 2025 Vol 9 No 3 (2025): Maret 2025 Vol 9 No 2 (2025): Februari 2025 Vol 9 No 1 (2025): Januari 2025 Vol 8 No 13 (2024): Publikasi Khusus Tahun 2024 Vol 8 No 10 (2024): Oktober 2024 Vol 8 No 9 (2024): September 2024 Vol 8 No 8 (2024): Agustus 2024 Vol 8 No 7 (2024): Juli 2024 Vol 8 No 6 (2024): Juni 2024 Vol 8 No 5 (2024): Mei 2024 Vol 8 No 4 (2024): April 2024 Vol 8 No 3 (2024): Maret 2024 Vol 8 No 2 (2024): Februari 2024 Vol 8 No 1 (2024): Januari 2024 Vol 7 No 13 (2023): Publikasi Khusus Tahun 2023 Vol 7 No 9 (2023): September 2023 Vol 7 No 8 (2023): Agustus 2023 Vol 7 No 7 (2023): Juli 2023 Vol 7 No 6 (2023): Juni 2023 Vol 7 No 5 (2023): Mei 2023 Vol 7 No 4 (2023): April 2023 Vol 7 No 3 (2023): Maret 2023 Vol 7 No 2 (2023): Februari 2023 Vol 7 No 1 (2023): Januari 2023 Vol 7 No 14 (2023): Antrian Publikasi Vol 6 No 13 (2022): Publikasi Khusus Tahun 2022 Vol 6 No 12 (2022): Desember 2022 Vol 6 No 11 (2022): November 2022 Vol 6 No 10 (2022): Oktober 2022 Vol 6 No 9 (2022): September 2022 Vol 6 No 8 (2022): Agustus 2022 Vol 6 No 7 (2022): Juli 2022 Vol 6 No 6 (2022): Juni 2022 Vol 6 No 5 (2022): Mei 2022 Vol 6 No 4 (2022): April 2022 Vol 6 No 3 (2022): Mei 2022 Vol 6 No 2 (2022): Februari 2022 Vol 6 No 1 (2022): Januari 2022 Vol 5 No 13 (2021): Publikasi Khusus Tahun 2021 Vol 5 No 12 (2021): Desember 2021 Vol 5 No 11 (2021): November 2021 Vol 5 No 10 (2021): Oktober 2021 Vol 5 No 9 (2021): September 2021 Vol 5 No 8 (2021): Agustus 2021 Vol 5 No 7 (2021): Juli 2021 Vol 5 No 6 (2021): Juni 2021 Vol 5 No 5 (2021): Mei 2021 Vol 5 No 4 (2021): April 2021 Vol 5 No 3 (2021): Maret 2021 Vol 5 No 2 (2021): Februari 2021 Vol 5 No 1 (2021): Januari 2021 Vol 5 No 13 (2021) Vol 4 No 13 (2020): Publikasi Khusus Tahun 2020 Vol 4 No 12 (2020): Desember 2020 Vol 4 No 11 (2020): November 2020 Vol 4 No 10 (2020): Oktober 2020 Vol 4 No 9 (2020): September 2020 Vol 4 No 8 (2020): Agustus 2020 Vol 4 No 7 (2020): Juli 2020 Vol 4 No 6 (2020): Juni 2020 Vol 4 No 5 (2020): Mei 2020 Vol 4 No 4 (2020): April 2020 Vol 4 No 3 (2020): Maret 2020 Vol 4 No 2 (2020): Februari 2020 Vol 4 No 1 (2020): Januari 2020 Vol 3 No 12 (2019): Desember 2019 Vol 3 No 11 (2019): November 2019 Vol 3 No 10 (2019): Oktober 2019 Vol 3 No 9 (2019): September 2019 Vol 3 No 8 (2019): Agustus 2019 Vol 3 No 7 (2019): Juli 2019 Vol 3 No 6 (2019): Juni 2019 Vol 3 No 5 (2019): Mei 2019 Vol 3 No 4 (2019): April 2019 Vol 3 No 3 (2019): Maret 2019 Vol 3 No 2 (2019): Februari 2019 Vol 3 No 1 (2019): Januari 2019 Vol 2 No 12 (2018): Desember 2018 Vol 2 No 11 (2018): November 2018 Vol 2 No 10 (2018): Oktober 2018 Vol 2 No 9 (2018): September 2018 Vol 2 No 8 (2018): Agustus 2018 Vol 2 No 7 (2018): Juli 2018 Vol 2 No 6 (2018): Juni 2018 Vol 2 No 5 (2018): Mei 2018 Vol 2 No 4 (2018): April 2018 Vol 2 No 3 (2018): Maret 2018 Vol 2 No 2 (2018): Februari 2018 Vol 2 No 1 (2018): Januari 2018 Vol 2 No 8 (2018) Vol 2 No 6 (2018) Vol 1 No 12 (2017): Desember 2017 Vol 1 No 11 (2017): November 2017 Vol 1 No 10 (2017): Oktober 2017 Vol 1 No 9 (2017): September 2017 Vol 1 No 8 (2017): Agustus 2017 Vol 1 No 7 (2017): Juli 2017 Vol 1 No 6 (2017): Juni 2017 Vol 1 No 5 (2017): Mei 2017 Vol 1 No 4 (2017): April 2017 Vol 1 No 3 (2017): Maret 2017 Vol 1 No 2 (2017): Februari 2017 Vol 1 No 1 (2017): Januari 2017 More Issue