cover
Contact Name
Aji Prasetya Wibawa
Contact Email
keds.journal@um.ac.id
Phone
+62818539333
Journal Mail Official
keds.journal@um.ac.id
Editorial Address
Universitas Negeri Malang Semarang St. No. 5, Malang, East Java, 65145, Indonesia
Location
Kota malang,
Jawa timur
INDONESIA
Knowledge Engineering and Data Science
ISSN : -     EISSN : 25974637     DOI : 10.17977/um018
KEDS, brings together researchers, industry practitioners, and potential users, to promote collaborations, exchange ideas and practices, discuss new opportunities, and investigate analytics frameworks on data-driven and knowledge base systems.
Articles 98 Documents
EEG Classification while Listening to Murottal Al-Quran and Classical Music using Random Forest Method Sumarti, Heni; Septiani, Fahira; Sudarmanto, Agus; Caesarendra, Wahyu; Edison, Rizki Edmi
Knowledge Engineering and Data Science Vol 6, No 2 (2023)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v6i22023p157-169

Abstract

This study is aimed to classify the brain activity of adolescents associated with audio stimuli; murottal Al-Quran and classical music.  The raw data were filtered using Independent Component Analisys (ICA) and followed by band-pass filter in Python on the Google Colab Extraction was processed with Power Spectral Density (PSD) and the Random Forest Method in Weka Machine Learning was used for classification.  The research results showed the same results between the two types of stimulation, namely the order of brain waves from highest to lowest were delta, alpha, theta and beta. The average brain waves of teenagers when given murottal al-Quran stimulation were 45.32% delta, 31.60% alpha, 17.02 theta and 6.05% beta. Meanwhile, the average brain waves of teenagers when given classical music stimulation were 46.54% delta, 28.64% alpha, 19.21% theta and 5.50% beta. Classification is obtained with the best value that frequently appears (mode) from the prediction results for each sample using random forest methods. The accuracy, precision, and recall of classifying adolescent brain waves when given murottal and classical music stimuli using the Random Forest method with cross-validation technique (optimum at k-fold=5) were 65.38%, 76.92%, and 70.00%, respectively.  The results of this study show that stimulation using murottal al-Quran and classical music effectively improves adolescent relaxation conditions.
Convolutional Neural Network in Motion Detection for Physiotherapy Exercise Movement Laistulloh, Dika Fikri; Handayani, Anik Nur; Asmara, Rosa Andrie; Taw, Phillip
Knowledge Engineering and Data Science Vol 7, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v7i12024p27-39

Abstract

Physiotherapy focuses on movement and optimal utilization of the patient's potential. Exercise Therapy is a physiotherapy procedure that specifically focuses exercises on active and passive movements. Cerebral Palsy (CP) patients are one of the sufferers of motor disorders of the upper extremities. Cerebral Palsy (CP) patients suffer from disorders in motor functions of the upper extremities. Physiotherapy Exercise Movement has 4 categories of movement exercises for the therapy of people with upper extremity body disorders: Elbow flexor strengthening in sitting using free weights, lifting an object up, reaching diagonally in sitting, and reaching from a low surface to a high surface. By taking 4 categories of motion movements in exercise therapy, data were taken using normal child subjects as standard movements, which then became a reference for CP child therapy. The limitations of therapy in physical care prompted researchers to investigate the use of image processing as input to Human Computer Interaction (HCI) in the process of motion detection-based therapy. In research using Deep learning as a classifier, namely using the CNN Model (Inception V3, Resnet152, and VGG16 architectural models). The results obtained by the CNN (Inception V3) model have the best performance with an accuracy percentage of 98%.
Timbre Style Transfer for Musical Instruments Acoustic Guitar and Piano using the Generator-Discriminator Model Nagari, Widean; Santoso, Joan; Setiawan, Esther Irawati
Knowledge Engineering and Data Science Vol 7, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v7i12024p101-116

Abstract

Music style transfer is a technique for creating new music by combining the input song's content and the target song's style to have a sound that humans can enjoy. This research is related to timbre style transfer, a branch of music style transfer that focuses on using the generator-discriminator model. This exciting method has been used in various studies in the music style transfer domain to train a machine learning model to change the sound of instruments in a song with the sound of instruments from other songs. This work focuses on finding the best layer configuration in the generator-discriminator model for the timbre style transfer task. The dataset used for this research is the MAESTRO dataset. The metrics used in the testing phase are Contrastive Loss, Mean Squared Error, and Perceptual Evaluation of Speech Quality. Based on the results of the trials, it was concluded that the best model in this research was the model trained using column vectors from the mel-spectrogram. Some hyperparameters suitable in the training process are a learning rate 0.0005, batch size greater than or equal to 64, and dropout with a value of 0.1. The results of the ablation study show that the best layer configuration consists of 2 Bi-LSTM layers, 1 Attention layer, and 2 Dense layers.
Comparison of Machine Learning Algorithms for Species Family Classification using DNA Barcode Riza, Lala Septem; Rahman, M Ammar Fadhlur; Prasetyo, Yudi; Zain, Muhammad Iqbal; Siregar, Herbert; Hidayat, Topik; Samah, Khyrina Airin Fariza Abu; Rosyda, Miftahurrahma
Knowledge Engineering and Data Science Vol 6, No 2 (2023)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v6i22023p231-248

Abstract

Classifying plant species within the Liliaceae and Amaryllidaceae families presents inherent challenges due to the complex genetic diversity and overlapping morphological traits among species. This study explores the difficulties in accurate classification by comparing 11 supervised learning algorithms applied to DNA barcode data, aiming to enhance the precision of species family classification in these taxonomically intricate plant families. The ribulose-1,5-bisphosphate carboxylase-oxygenase large sub-unit (rbcL) gene, selected as a DNA barcode locus for plants, is used to represent species within the Amaryllidaceae and Liliaceae families. The experimental results demonstrate that nearly all tested models achieve accurate species classification into the appropriate families, with an accuracy rate exceeding 97%, except for the Naïve Bayes model. Regarding computational time, the Random Forest model requires significantly more time for training than other models. Regarding memory usage, the Least Squares Support Vector Machine with a polynomial kernel, and Regularized Logistic Regression consume more memory than other models. These machine learning models exhibit strong concordance with NCBI's classifications when predicting families using the test dataset, effectively categorizing species into the Amaryllidaceae and Liliaceae families.
Optimizing Malaria Control: Granular and Cost-Effective Mosquito Habitat Index in Endemic Areas Through Satellite Imagery Daulay, Nur Ainun; Putri, Salwa Rizqina; Wijayanto, Arie Wahyu; Wulansari, Ika Yuni
Knowledge Engineering and Data Science Vol 7, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v7i12024p40-57

Abstract

Malaria, classified as a tropical disease under the Sustainable Development Goals (SDGs) indicator 3.3, remains a significant global health challenge. In this study, by taking advantage of multiple spectral composite indexes of multisource satellite imagery to capture various geospatial features relevant to the suitability of marsh mosquito habitat, we introduced the Mosquito Habitat Suitability Index (MHSI) to assess potential Anopheles mosquito breeding sites in terms of the vegetation density, water bodies, environment temperature, and humidity in any particular areas. The MHSI integrates the publicly accessible granular level of the normalized difference vegetation index, water index, land surface temperature, and moisture index from cost-effective low and medium-resolution optical satellite data. We focus on West Papua Province, Indonesia, known for diverse ecological conditions and varying malaria prevalence, as a case study area. From the built index, the risk zone map is then formed with the K-Means algorithm. One key finding is the elevated risk in Fakfak Regency, demanding particular attention, as its high-risk area represents 45% of its total. This research aids localized decision-making to combat malaria's unique challenges in West Papua Province which are relevant for implementation in other regions, contributing to SDG-aligned interventions for malaria eradication by 2030.
Stacked LSTM-GRU Long-Term Forecasting Model for Indonesian Islamic Banks Sujatna, Yayat; Karno, Adhitio Satyo Bayangkari; Hastomo, Widi; Yuningsih, Nia; Arif, Dody; Handayani, Sri Setya; Kardian, Aqwam Rosadi; Wardhani, Ire Puspa; Rere, L.M Rasdi
Knowledge Engineering and Data Science Vol 6, No 2 (2023)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v6i22023p215-250

Abstract

The development of the Islamic banking industry in Indonesia has become a significant concern in recent years, with rapid growth in the number of banks operating based on Sharia principles. To face emerging challenges and opportunities, a deep understanding of the long-term financial behavior of Islamic banks is becoming increasingly important. This study aims to predict the share price of PT Bank Syariah Indonesia Tbk, over 28 days using the LSTM-GRU stack. The observation stage includes importing the dataset, data separation, model variations, the training process, output, and evaluation. Observations were conducted using 10 model variations from 4 stacks of LSTM and GRU. Each model performs the training process in four epochs (200, 500, 750, and 1000). The results of observations in this study show that long-term predictions (28 days ahead) using four stacks of LSTM-GRU and daily training accumulation techniques produce better accuracy than the general method (using multiple outputs). From the observations we have made for predictions for the next 28 days, the model with the LGLG stack arrangement (LSTM-GRU-LSTM-GRU) produces the best accuracy at epoch 750 with an MSE LSTM-GRU 63.43762863. This study will undoubtedly continue in order to achieve even better precision, either by utilizing a new design or by further improving the technology we are now employing.
Docker Optimization of an Automotive Sector Virtual Server Infrastructure Hernandez, Leonel; Rios, Carlos Eduardo Uc
Knowledge Engineering and Data Science Vol 7, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v7i12024p71-85

Abstract

Server virtualization is a powerful strategy for optimizing network infrastructure. It allows multiple virtual servers to run on a single physical server, maximizing resource utilization and improving efficiency. Deploying server virtualization using Docker technology offers a lightweight and flexible approach to optimizing network infrastructure. Docker contains package applications and their dependencies, enabling consistent and efficient deployment across various environments. Specifically, optimizing virtual server infrastructure using Docker Technology in the automotive sector focuses on improving the efficiency and management of the company's virtual server resources. By implementing Docker technology, a container platform that allows the packaging and running of applications in a lightweight and secure manner, the project aims to reduce operational costs and increase the agility and scalability of IT services. Adopting Docker will facilitate the rapid deployment of applications, ensuring a consistent and isolated execution environment for each one. This will allow the company to manage its workloads more efficiently and respond quickly to market needs, reassuring the audience about the potential improvements in their work processes. The study is developed under the top-down methodology guidelines for the design of telematics systems. It also includes a detailed analysis of the current server performance, a proposal for restructuring the existing infrastructure, and a plan to implement DevOps practices to optimize development and operational processes. With these changes, a significant improvement in system availability and performance is expected, thus contributing to the company's growth and technological innovation. The benefits of Docker implementation are numerous, including lightweight (containers share the host OS kernel, reducing overhead), portability (consistent environment across development, testing, and production), scalability (effortlessly scale containers horizontally), isolation (each container runs in its isolated environment), and efficiency (optimal resource utilization compared to traditional VMs). These benefits promise a brighter future for the company's IT infrastructure.
Exploring LSTM-based Attention Mechanisms with PSO and Grid Search under Different Normalization Techniques for Energy demands Time Series Forecasting Pranolo, Andri; Zhou, Xiaofeng; Mao, Yingchi; Pratolo, Bambang Widi; Wibawa, Aji Prasetya; Utama, Agung Bella Putra; Ba, Abdoul Fatakhou; Muhammad, Abdullahi Uwaisu
Knowledge Engineering and Data Science Vol 7, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v7i12024p1-12

Abstract

Advanced analytical approaches are required to accurately forecast the energy sector's rising complexity and volume of time series data.  This research aims to forecast the energy demand utilizing sophisticated Long Short-Term Memory (LSTM) configurations with Attention mechanisms (Att), Grid search, and Particle Swarm Optimization (PSO). In addition, the study also examines the influence of Min-Max and Z-Score normalization approaches in the preprocessing stage on the accuracy performances of the baselines and the proposed models. PSO and Grid Search techniques are used to select the best hyperparameters for LSTM models, while the attention mechanism selects the important input for the LSTM. The research compares the performance of baselines (LSTM, Grid-search-LSTM, and PSO-LSTM) and proposes models (Att-LSTM, Att-Grid-search-LSTM, and Att-PSO-LSTM) based on MAPE, RMSE, and R2 metrics into two scenarios normalization: Min-Max, and Z-Score. The results show that all models with Min-Max normalization have better MAPE, RMSE, and R2 than those with Z-Score. The best model performance is shown in Att-PSO-LSTM MAPE 3.1135, RMSE 0.0551, and R2 0.9233, followed by Att-Grid-search-LSTM, Att-LSTM, PSO-LSTM, Grid-search-LSTM, and LSTM. These findings emphasize the effectiveness of attention mechanisms in improving model predictions and the influence of normalization methods on model performance. This study's novel approach provides valuable insights into time series forecasting in energy demands.
Optimising the Fashion E-Commerce Journey: A Data-Driven Approach to Customer Retention Fadhila, Hasna Luthfiana; Permadi, Vynska Amalia; Tahalea, Sylvert Prian
Knowledge Engineering and Data Science Vol 7, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v7i12024p58-70

Abstract

A fashion e-commerce company offers a wide range of products from domestic and international brands that are popular with young people. However, there has been an increase in non-organically acquired customers, many of whom do not return to make repeat purchases. This has led to a higher customer churn rate, with a significant proportion of non-organically sourced customers failing to become repeat purchasers. Consequently, a churn analysis and prediction model were developed to address this issue. This paper employs the Recency, Frequency, and Monetary (RFM) framework for churn analysis and prediction. The framework is underpinned by three key dimensions: last purchase recency, purchase frequency, and total transaction value. Seven machine learning algorithms were evaluated to identify the optimal approach. Following a comparative analysis of these models, Random Forest emerged as the superior algorithm, demonstrating an accuracy of 0.99, precision of 0.97, recall of 0.99, ROC AUC of 0.98, and F1-score of 0.97. Consequently, this model will be utilized for churn prediction. Based on the analysis and modelling, several recommendations are offered to enhance customer retention for the fashion e-commerce platform. In addition to predicting churn, this paper provides insights into potential refinements to the churn prediction model, such as real-time monitoring, personalized customer experiences, analysis of customer feedback, and lifetime value analysis.
Hybrid Method for User Review Sentiment Categorization in ChatGPT Application Using N-Gram and Word2Vec Features Nisa, Husna Luthfiatun; Ahdika, Atina
Knowledge Engineering and Data Science Vol 7, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v7i12024p13-26

Abstract

The rapid development of Artificial Intelligence (AI) has significantly influenced nearly all aspects of life. One AI product widely used by people worldwide is the Chat Generative Pre-Training Transformer (ChatGPT), which can respond to questions conversationally. Although data indicates that the use of ChatGPT in Indonesia is less widespread than in other countries, a Populix survey reveals that half of the respondents have utilized ChatGPT, using AI more than once a month. This indicates its crucial role among the Indonesian population. ChatGPT is not limited to browsers; it is also available as a downloadable application on the Google Play Store. The ChatGPT application has garnered various user reviews, particularly those from Indonesia. Therefore, this research employs the Naïve Bayes Classifier and K-Means Clustering to classify sentiments and group user reviews of the ChatGPT application originating from Indonesia. The study utilizes TF-IDF and Word2Vec as feature extraction methods, combining various N-Gram in data preprocessing to consider the context of sequentially arranged words that may carry meaning. The best classification results are obtained from the trigram classification model, as indicated by precision, recall, and accuracy values of 0.99 each, along with an F1-score of 1. Clustering also yields positive results, with some overlapping, yet words within clusters exhibit high similarity. Categorization results suggest that user reviews of the ChatGPT application from Indonesia tend to be positive, expressing satisfaction impressions, providing feedback for feature development, and expressing hope for the continued availability of the accessible version of ChatGPT due to its remarkable benefits.

Page 9 of 10 | Total Record : 98