cover
Contact Name
Triwiyanto
Contact Email
triwiyanto123@gmail.com
Phone
+628155126883
Journal Mail Official
editorial.jeeemi@gmail.com
Editorial Address
Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya Jl. Pucang Jajar Timur No. 10, Surabaya, Indonesia
Location
Kota surabaya,
Jawa timur
INDONESIA
Journal of Electronics, Electromedical Engineering, and Medical Informatics
ISSN : -     EISSN : 26568632     DOI : https://doi.org/10.35882/jeeemi
The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas of research that includes 1) Electronics, 2) Biomedical Engineering, and 3)Medical Informatics (emphasize on hardware and software design). Submitted papers must be written in English for an initial review stage by editors and further review process by a minimum of two reviewers.
Articles 7 Documents
Search results for , issue "Vol 3 No 2 (2021): July" : 7 Documents clear
Design of Hybrid Portable Underwater Turbine Hydro and Solar Energy Power Plants: Innovation to Use Underwater and Solar Current as Alternative Electricity in Dusun Dongol Sidoarjo Anggara Trisna Nugraha; Dadang Priyambodo
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i2.5

Abstract

The need for electrical energy in Indonesia continues to increase every year. In line with the increase in the electrification ratio to 100% in 2050, the demand for electrical energy is projected to reach 7 times, namely 1,611 TWh. To meet electricity needs, the government has created a 35 GW program, but one of the largest contributors to power generation fuel is coal with a share of 58% or around 50 GW which is estimated to be exhausted within the next 68 years. For this reason, innovations are needed in terms of fulfilling electrical energy by utilizing renewable energy potential, one of which is hydro energy, which is 45,379 MW from a total resource of 75,091 MW. Therefore, from this potential, innovations related to renewable energy have been created, namely the Hybrid Portable Underwater Turbine Hydro and Solar Energy hybrid power plant. This power plant uses an undersea current as a propulsion which is hybridized with solar power to increase the production of electrical energy. This power plant has the advantage that there is an Underwater turbine design that is resistant to underwater flow and a water flow direction to increase the work efficiency of the underwater turbine. From the test results, the portable Underwater turbine hydro produces 950 W in a day. Solar panels produce 65.6 Watts a day. The total hybrid that can be produced is 1.02 kW a day. In its implementation it can supply loads of up to 900 (VA) such as lamps, fans, TV, etc. This hybrid power plant can be a solution to help meet electricity needs in the area around Dusun Dongol, Sidoarjo through alternative electrical energy innovations.
Prototype Design of Carbon Monoxide Box Separator as a Form of Ar-Rum Verse 41 and To Support Sustainable Development Goal`s Number 13 (Climate Action) Anggara Trisna Nugraha; Dadang Priyambodo
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i2.6

Abstract

The maritime sector is one of the paths to Golden Indonesia 2045. This is because 70% of Indonesia's territory is a sea with an area of ​​3.25 million km2 and is supported by the large potential that can be utilized for the welfare of Indonesia, one of which is as a contributor to foreign exchange with foreign exchange potential from maritime sector amounting to US $28 million to US $56 million. The problem lingers on how to possible solve the problem regarding air pollution without shutting down industrial operations. Many multinational power plants have launched different campaigns in order to minimize the problem like planting trees and the like. But these small growing industries like grilling restaurants have given way to arising problem of air pollution issues On the other hand, the ocean is a contributor to half of the world's oxygen. But in a period of 50 years, areas with minimal oxygen levels in the oceans have increased. The main cause is global warming, one of which comes from increasing levels of carbon monoxide in the air. One of these gases comes from incomplete combustion in motorized vehicles. This is also exacerbated by the growth of motorized vehicles which has increased by 11.5% per year. If left like this, marine life will be destroyed and Indonesia will not reach its peak of glory in 2045. So to overcome this problem, a prototype design of Carbon Monoxide Box Separator was created. This prototype is a combination of detector sensors consisting of MQ7 to detect carbon monoxide, MQ135 to measure air quality, and DHT11 to measure humidity and air temperature, as well as a high voltage system on the L-Box (Lightning Box) which can produce O2 because of the copper plate. on the L-Box will bind the element carbon to carbon monoxide using a voltage of 400 kV. With this prototype design, it is hoped that Indonesia can achieve its glory and also as a form of QS practice. Ar-Rum verse 41 regarding Allah's command to preserve nature and the environment.
Performance Evaluation of IoT-based SpO2 Monitoring Systems for COVID-19 Patients Trie Maya Kadarina; Rinto Priambodo
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i2.1

Abstract

Internet of Things (IoT) applications can be used in healthcare services to monitor patients remotely. One implementation is that it is used to monitor COVID-19 patients. During the COVID-19 pandemic, people who are infected without symptoms must self-isolate so that the virus does not spread. Measurement of blood oxygen levels or SpO2 is one of the measurements that must be carried out in routine examination procedures for self-isolating patients for early detection of silent hypoxemia in COVID-19 patients. Previous research has developed an IoT-based health monitoring system with a Wireless Body Sensor Network (WBSN) and a gateway that can be used for data acquisition and transmission. The system uses a home pulse oximeter to measure SpO2 and heart rate and an Android application that functions as an IoT gateway to collect data from sensors and add location information before sending data to the server. The WBSN has been successfully integrated with two types of open source IoT platforms, namely ThingsBoard and Elasticsearch Logstash Kibana (ELK). However, it is necessary to carry out further studies on analytical and experimental performance tests of the two systems. Therefore, the purpose of this study is to develop a performance evaluation of the IoT-based SpO2 monitoring systems using the Thingsboard and ELK as IoT platforms. To evaluate the performace we ran the monitoring system on both platforms using pulse oximeter and Android device as IoT gateway with HTTP and MQTT as transport protocol for sending the data to the server. From this study we found that average time of message delivery in ELK compared to ThingsBoard using the same protocols was higher but stable.
Oximeter and BPM on Smartwatch Device Using Mit-App Android with Abnormality Alarm Bedjo Utomo; Syaifudin Syaifudin; Endang Dian Setioningsih; Torib Hamzah; Parameswaran Parameswaran
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i2.4

Abstract

Monitoring is an activity that is carried out continuously. Healthy condition is a parameter that is needed in life, one of the important parameters is the measurement of oxygen saturation in the blood and heart rate. The purpose of this research is to develop a Smartwatch SpO2 device and BPM sensor that is connected to WIFI using the Android Platform instead of using an LCD for parameter reading. This module design method uses the MAX30100 sensor to display the SpO2 and BPM values ​​displayed on the OLED. Data processing is carried out using ATMEGA 328P programming and then displayed in the Android-based Mit-app application. The results show the average error for the SPO2 value is 0.868 % and the standard deviation is 0.170 %, while the BPM value has an average error of 0.56 % and a standard deviation of 0.30%. From the results of the comparison data analysis, the largest error was 1.03% and the smallest was 0.62% for Spo2 ml/hour with an accuracy of 0.05 (0.57%) with a precision value of 0.08 at the selection speed of 50 ml/hour. From the results above, it can be concluded that the data can be displayed on OLED using the Mit-app Android application with an error rate accuracy of 0.57%. From the results of this research design, it is hoped that it can facilitate the diagnosis of the condition of patients and health nurses
Apnea Monitor Using Pulse Oxymetry with Tactile Stimulation to Reduce Respiration Failure Levana Forra Wakidi; I Dewa Hari Wisana; Anita Miftahul Maghfiroh; Vijay Kumar Sharma
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i2.3

Abstract

Respiratory failure (apnea) often occurs in premature babies, this should be avoided because it causes low oxygen concentrations in the blood so that it can damage brain function and lead to death. Apnea is characterized by a decrease in oxygen saturation (SpO2). The purpose of this study was to design an apnea monitor that was detected with SpO2 parameters, alarms, and vibrating stimulation. This study uses infrared and red LEDs that emit light through the surface of the finger and is detected by a photodiode sensor, this light signal will be converted into an electrical signal and calculated by Arduino to determine the patient's SpO2 and BPM values. If the SpO2 value drops 5% within 5 seconds from the baseline, the device will indicate apnea has occurred and the vibrating motor is working. SpO2 signals and alarms are sent to the nurse station computer via Bluetooth HC-05. The instrument was calibrated with an SpO2 calibrator and the measurement results were compared with a BION pulse oximetry brand. The results of the instrument measurement on two subjects on the SpO2 parameter showed an error value of 2% and the BPM parameter obtained an error value of 4.54%. Testing the BPM parameter using a calibrator at the 30 and 60 BPM settings shows an error value of 0% and at the 120 BPM setting the error value is 0.01%. The vibrating motor to stimulate the baby's body when apnea occurs is functioning properly. The results showed that measurements using subjects tended to have high error values ​​due to several factors. This research can be implemented on patient monitors to improve patient safety and reduce the workload of nurses or doctors
A Coagulation Mode on Bipolar Electrosurgery Unit Using 350 KHz Frequency and Power Selection Prastawa Asalim Tetra Putra; Bambang Guruh Irianto; Tribowo Indrato; Lamidi Lamidi; Rizki Andriyanto; Nora Bouzeghaia
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i2.2

Abstract

Losing a lot of blood during surgery using a conventional scalpel is something that is highly avoided. The purpose of this study is to replace the conventional scalpel with a tool that utilizes a high frequency whose duty cycle is regulated and then centered at one point. Researchers take advantage of the effect of heat generated by high frequencies which are centered at one point so that it can be used for the process of surgery and coagulation in body tissues so as to minimize the occurrence of a lot of blood loss. Researchers use a high frequency of 350 KHz which is set with a duty cycle of 6% on 94% off and is equipped with 3 levels of power selection and uses forceps as a medium to concentrate high frequencies at one point. The module design consists of a 350 KHz frequency generator, a pulse control circuit to adjust the duty cycle, a power control circuit as a power setting, a driver circuit to combine the frequency with the set power so that different outputs are obtained according to the settings, and an inverter circuit to increase the voltage. In this study, after measuring using an oscilloscope in the driver circuit, the average output amplitude at each low, medium, and high setting was 27.25 Vpp, 28 Vpp, and 28.625 Vpp. The results showed that the bipolar electrosurgery unit (coagulation) module as a whole can replace conventional scalpels so that it can minimize the occurrence of a lot of blood loss during surgery. However, the frequency generator and power selection need to be improved.
Long Distance Dual SpO2 Monitoring System for Premature Babies Using Bluetooth Communication Priyambada Cahya Nugraha; Muhammad Ridha Mak'ruf; Lusiana; Sari Luthfiyah; Wahyu Caesarendra
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i2.7

Abstract

Monitoring the baby's health status is very important, especially for babies born prematurely. Oxygen saturation levels in newborns are very important to know because when the oxygen saturation levels in newborns are low, it is necessary to watch out for hemodynamic abnormalities in the baby. Measurement of oxygen saturation levels in newborns can help detect congenital abnormalities in infants early. This study aims to design an equipment system to continuously monitor the condition of oxygen saturation in newborns. Where in this discussion a monitoring tool is used to monitor 2 premature babies in a baby incubator simultaneously using a Neonatal Fingertip sensor. The system will display the oxygen saturation (SpO2) value and signal. Monitoring on this tool is done wirelessly using the HC-05. Based on the results of tests and measurements in 5 different patients with a pulse oximeter comparison, the difference value of 1% in each patient's results was obtained. The results of this study will greatly help facilitate the work of paramedics in monitoring the vital conditions of newborn babies.

Page 1 of 1 | Total Record : 7