cover
Contact Name
Triwiyanto
Contact Email
triwiyanto123@gmail.com
Phone
+628155126883
Journal Mail Official
editorial.ijeeemi@gmail.com
Editorial Address
Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya Jl. Pucang Jajar Timur No. 10, Surabaya
Location
Kota surabaya,
Jawa timur
INDONESIA
Indonesian Journal of electronics, electromedical engineering, and medical informatics
ISSN : -     EISSN : 26568624     DOI : https://doi.org/10.35882/ijeeemi
The Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics (IJEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas of research that includes 1) Electronics, 2) Biomedical Engineering, and 3) Medical Informatics (emphasize on intelegent system design). Submitted papers must be written in English for an initial review stage by editors and further review process by a minimum of two reviewers.
Articles 7 Documents
Search results for , issue "Vol 4 No 4 (2022): November" : 7 Documents clear
QRS Complex Detection On Heart Rate Variability Reading Using Discrete Wavelet Transform Arga Wihantara; I Dewa Gede Hariwisana; Andjar Pudji; Sari Luthfiyah; Vijay Anant Athavale
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i4.236

Abstract

Heart Rate Variability or heart rate in humans is used to monitor the heart rate in humans, the function of the heart rate monitor is to monitor the human heart rate. The purpose of making this tool is to compare the results of heart rate readings using the discrete wavelet transform method to facilitate the detection of R peak. This can be learned by evaluating and studying each decomposition result from level 1 to level 4 on Discrete Wavelet Transform processing using Haar mother wavelets. This study uses a raspberry pi 3B as a microcontroller as a data processor that is obtained from the ECG module. From this study, it can be concluded that in heart rate readings, level 2 decomposition details coefficient has the best value as data processing that helps for heart rate readings with an error value of 0.531%, HRV readings of 0.005 in comparison with phantom tools and a standard deviation of 0.039. The advantage of this tool is a good precision value in HRV and BPM readings. In reading the HRV of the respondent, it was found that each initial condition of the patient's HRV would be high due to the respondent's unstable condition. The disadvantage of this tool is that there is a delay in running the program, there is no display in the form of a signal in real time.
Analysis of The Accuracy of Temperature Sensors at The Calibrator Incubator Laboratory are equipped with data storage base on Internet of Thing Candra Prastyadi; Bambang Guruh Irianto; Her Gumiwang Ariswati; Dyah Titisari; Steyve Nyatte; Shubhrojit Misra
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i3.241

Abstract

A laboratory incubator is a tool used to incubate or incubate a breed. Incubators provide optimum temperature conditions for microorganisms to grow. The incubator has a temperature regulator so that the temperature can be adjusted according to the breed to be incarnated. Incubators utilize hot-dry like ovens. The purpose of this study is to conduct testing and analyze the accuracy of thermocouple sensors with incubator media in laboratory incubator calibrator tools. The contribution of the research is to know the level of accuracy of the sustainable sensor for sensing the temperature in the lab incubator. The main Design consists of 8 MAX 6675 Standards, 8 Thermocouple type K, Arduino Mega, and SD Card Standards. The temperature not in the incubator device is measured by a Type K thermocouple sensor. Thermocouple sensor numbers 8 channels that measure the temperature at each incubator camber point. The temperature will be stored on the SD card to analyze the data and the data can be processed into the form of a graphic. Benchmarking is done using a data logger temperature tool. This is done to make the Design results are under the standards of the Standard. After comparing with the Standard get the largest error value is 3.98%, at channel T6 temperature 35 °C with ordinary incubator media and the smallest error in ordinary incubator media point T6 temperature 37 ° C which is 0.06 % and in fan incubator temperature 35 C has the largest error which is 2.98 % and the smallest error 0.86%. The conclusion of this study is that the design can work well in measuring the temperature of the incubator, as well as the system for storing readings using the SD card Design and sending data using the internet network can work well.
Electronic Stethoscope Design with IoT (Internet of Things)-based Disease Symptom Detection Torib Hamzah; Endang Dian Setioningsih; Sumber Sumber; Nazila Ragimova
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i4.247

Abstract

Auscultation is a technique or method most often used by medical personnel in the initial examination of patients. One way is to use a stethoscope. However, this method has its drawbacks because the diagnosis is carried out subjectively and cannot be relied on with the accuracy to diagnose the symptoms of heart defects. Thus, the purpose of this study is to create an IoT system for electronic stethoscopes with BPM value output and make analog filters to eliminate noise interference which was a major obstacle in previous studies. The contribution to this study is to make it easier for medical users to monitor vital conditions, namely BPM remotely and produce BPM values in real-time. The method used in this study was to use a mic condensor placed on the patient's chest to detect pressure changes that occurred. This change in pressure causes a change in the voltage output value on the condensor mic. Output dari mic condenser masuk dan diproses di rangkaian PSA. Output sinyal dari PSA masuk ke mikrokontroler yang telah diprogram. Hasil yang dipeoleh dari pengukuran mengasilkan nilai error pengukuran nilai BPM dari 5 responden dan diperoleh nilai error yang dihasilkan dari responden 1 diperoleh error sebesar 0.33 BPM, responden 2 diperoleh nilai error sebesar 0,67 BPM, responden 3 memiliki nilai error sebesar 0,5 BPM, responden 4 nilai error sebesar 0,67 dan responden 5 mempunyai nilai error sebesar 0,67 BPM. The results of the statistical test were also obtained P-Value>0.05 which explained that the resulting value did not have a significant difference and could be used for medical purposes. This research can help make it easier for doctors to analyze and diagnose symptoms of heart defects because this system is equipped with the detection of disease symptoms.
Performance Comparison of ECG Bio-Amplifier Between Single and Bi-Polar Supply Using Spectrum Analysis Based on Fast Fourier Transform Anita Miftahul Maghfiroh; Syevana Dita Musvika; Vugar Abdullayev
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i4.248

Abstract

Heart performance is one of the vital signs that cannot be ignored and must be monitored periodically. In this case, the measuring range of the human heart rate is between 60-100 BPM, in which the measurement unit is expressed as Beat per Minute (BPM). Therefore, it is very important to use Electrocardiograph equipment to tap the electrical signals of the heart with correct readings and minimal interference such as frequency of electric lines and noise. The purpose of this study was to compare the instrumentation amplifier using a single supply with a bi-polar supply in the ECG design to select the best instrumentation amplifier, which is expected to contribute to other researchers in choosing the right type of instrumentation amplifier that is efficient and qualified. In this case, the research was carried out by comparing two single supply instrumentation amplifiers using the AD623 IC and the bi-polar supply using the AD620 IC, continued by the use of Fast Fourier Transform (FFT) to determine the frequency spectrum of the ECG signal. The test results further showed that the use of single power instrumentation could reduce more noise compared to the Bi-Polar instrumentation amplifier by strengthening 60 dB Low pass filter circuit. Meanwhile, the FFT results in finding the frequency spectrum explained that the FFT results on the ECG signal provided information that the ECG signal had a frequency range between 0.05 Hz and 100 Hz. When the frequency is more than 100 Hz, the frequency started to be suppressed and when the frequency is less than 100 Hz, the frequency is passed. This research could be further used as a reference by other researchers to determine which type of instrumentation amplifier is better.
Comparison of two Wireless Electromyography Sensor Module Designs using wet electrodes and dry electrodes at the time of Sitting motion to stand Farid Amrinsani; Levana Forra Wakidi; Made Dwi Pandya Suryanta; Dessy Tri Wulandari; Wahyu Caesarendra
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i4.249

Abstract

One of the biosignals used to identify muscle signals in humans is electromyography. Electromyography signals are frequently utilized as input and are designed to aid in post-stroke therapy recovery or to assist people with disabilities. This phenomena has led to the development of numerous electromyography module sensor designs for use in support of various research-based applications. In this study, an electromyography sensor module without an electrode cable is compared to an electromyography sensor module that uses gel electrodes, plate electrodes, electrode cables, and other electrode technologies. A function generator is used to test each module, and the correlation value is sought to determine the connection between the two modules under consideration. Later, the findings of this study served as the foundation for other studies. Researchers also wish to explore the possibility of developing an electromyography sensor module by altering the wireless EMG sensor module's structure and design. Whereas this study can subsequently be extremely helpful to improve the standing of the Health Poltekkes Kemenkes Surabaya.
Desain and Build a Medium Voltage Cubicel Temperature and Humidity Optimization Tool to Minimize the Occurrence of Corona Disease with the PLC-Based Fuzzy Method Sindy Yurisma Sheila; Nur Wakhidatur Rochamwati; Faris Riyadi; Reza Fardiyan As’ad; Anggara Trisna Nugraha
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i4.251

Abstract

Cubicle is an electrical device that functions as a breaker, protector, connector, controller, and divider of the power system electricity from a power source and reduce sparks when connecting. One of the problems that occur in medium voltage cubicles is the presence of corona. Corona phenomena at cubicle terminations can trigger disturbances such as a decrease in insulation quality, power loss and a significant increase in harmonic distortion. Based on previous research, the solution to minimize the occurrence of corona is to optimize the temperature and humidity of the cubicle. Many of the previous studies examined the control of cubicle temperature and humidity using fans and heaters, but the temperature and humidity had not yet reached a stable and optimal point. In this study, raised a problem regarding the optimization of temperature and humidity in cubicles using the fuzzy method to stabilize the performance of medium voltage cells. In this study, it was found that the fuzzy method in this prototype was able to stabilize the panel humidity at 55% RH and stabilize the panel room temperature at 31.5 o C. Thus, it is hoped that a stable and optimal temperature and humidity can minimize the occurrence of corona. The use of HMI/SCADA based applications can facilitate the ability of the user (operator) to monitor several available parameters and manually control the operation of the panel (on/off).
Detection Signal Electromyograpy using Dry Electrode and Disposible Electrodes on the Upper Extremity when Lifting Weights Farid Amrinsani; Levana Forra Wakidi; Made Dwi Pandya Suryanta; Dessy Tri Wulandari; Muhammad Tariq Sadiq
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i4.252

Abstract

One of the biosignals used to identify human muscle impulses is electromyography. Electromyographic signals are frequently utilized as inputs and are designed to help persons with disabilities or aid in the healing process following stroke therapy. According to studies, this occurrence has led to the development of numerous electromyography module sensor designs to meet different purposes. In this work, disposable electrodes and dry electrodes are used to examine the root mean square RMS values of two different electromyography sensor module types. With a 3 kg barber lift action, each module is used to detect signals in the biceps, which are part of the upper extremity muscles. According to the study's findings, the two electromyography modules with disposable electrodes produced data with a p-value of 0.001766368 0.05. It can be inferred that there is no difference between the E1 and E2 modules because the p-value for the t-test of the two modules with dry electrodes is 0.001766368 0.05. However, there is a variance in the amplitude's magnitude, with a difference of 30mV between the disposable and dry electrodes. The results of this study can be used to teach students, and a module developed as a result of it can be applied to other studies to help find electromyographic signals.

Page 1 of 1 | Total Record : 7