cover
Contact Name
Ahmad Rizal Sultan
Contact Email
-
Phone
+62411585367
Journal Mail Official
jurnal-elektrika@poliupg.ac.id
Editorial Address
Jurusan Teknik Elektro Kampus 2 Moncongloe Jl. Tamalanrea Raya (BTP) Makassar 90245
Location
Kota makassar,
Sulawesi selatan
INDONESIA
Jurnal Teknologi Elekterika
ISSN : 14128764     EISSN : 26560143     DOI : http://dx.doi.org/10.31963/elekterika
Jurnal Teknologi Elekterika: Jurnal penelitian PNUP sebagai wadah komunikasi ilmiah antar akademisi, peneliti dan praktisi dalam menyebarluaskan hasil penelitian bidang rumpun elektro dan informatika yaitu teknik listrik, energi, elektronika, kontrol, telekomunikasi, komputer dan jaringan, dan Multimedia.
Articles 183 Documents
Design and Development of a Three-Phase Induction Motor Speed Control System Using Altivar 61 Based on Temperature Sensor and Internet of Things (IoT) Buwarda, Sukriyah; Mutmainnah, Mutmainnah; Yakob, Muh. Fhadly
Jurnal Teknologi Elekterika Vol. 22 No. 2 (2025): Nopember
Publisher : Jurusan Teknik Elektro Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31963/elekterika.v13i2.5785

Abstract

Penggunaan motor induksi tiga fasa di industri semakin meningkat karena keandalan, efisiensi energi, dan kemudahan perawatannya. Namun, motor ini sulit dikendalikan kecepatannya karena berputar pada kecepatan konstan. Penelitian ini bertujuan merancang sistem pengaturan kecepatan motor induksi tiga fasa menggunakan Variable Speed Drive (VSD) Altivar 61 yang dikendalikan oleh mikrokontroler ESP32 berbasis Internet of Things (IoT) dengan masukan dari sensor suhu DHT22. Sistem ini mampu menyesuaikan kecepatan motor secara otomatis berdasarkan suhu lingkungan. Hasil pengujian menunjukkan bahwa pada suhu 28°C motor berhenti, pada suhu 30–34°C motor berputar pada 560 RPM, pada suhu 36–38°C motor berputar pada 1070 RPM, dan pada suhu ≥40°C motor mencapai 1486 RPM. Akurasi sensor DHT22 mencapai 96,97%, dan sistem mampu memberikan pengendalian kecepatan motor secara efisien sesuai kondisi suhu ruangan
The Optimal Integration of Photovoltaic (PV) and Battery Energy Storage Systems in Power Distribution Using Hybrid Flower Pollination and β-Hill Climbing ramadan, m.sahrul; Ihlas, Ihlas; Assalam, Imam Faried; Asri, Andarini; Arief, Ardiaty; Nappu, Muhammad Bachtiar
Jurnal Teknologi Elekterika Vol. 22 No. 2 (2025): Nopember
Publisher : Jurusan Teknik Elektro Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31963/elekterika.v22i2.5805

Abstract

This study discusses the optimization of the placement and capacity of Photovoltaic (PV) and Battery Energy Storage System (BESS) units in the IEEE 33-bus distribution system using the Hybrid Flower Pollination Algorithm (FPA) and β-Hill Climbing (βHC) or HyFPAβHC methods. The primary objective of this research is to enhance the performance of the distribution system by reducing power losses and improving the voltage profile. Based on the optimization results, three PV units with capacities of 749.3 kW, 577.5 kW and 620 kW were optimally placed at buses 8, 13 and 20, respectively, while one BESS unit with a capacity of 1112.4 kW was installed at bus 24. Simulation results indicate that the integration of PV and BESS significantly reduces the total system power losses from approximately 50 kW on several main feeders under the base condition (without Distributed Generation) to below 5 kW after optimization. In addition, the voltage profile improved from a minimum value of 0.92 p.u. to a stable range of 0.98–1.0 p.u. Furthermore, the integration of PV and BESS contributes to mitigating power fluctuations, enhancing energy efficiency, and improving the reliability of the distribution system operation. Therefore, the HyFPAβHC method is proven to be effective in determining the optimal configuration of PV and BESS units to improve the technical performance of electrical distribution systems.
An Intelligent CCTV-Based Anomaly Detection System for Flood Prevention Caused by Waste in Urban River Streams Syahrir , Syahrir; Rahmat , Audhia Rahmadani; Ardi, Adriana; Pratiwi , Indah; enriani , Airin T
Jurnal Teknologi Elekterika Vol. 22 No. 1 (2025)
Publisher : Jurusan Teknik Elektro Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31963/elekterika.v22i1.6018

Abstract

Flooding is the most frequent natural disaster in Indonesia, with BNPB data showing a sharp increase since 2016, reaching 1,794 incidents in 2021. In 2024, 1,420 flood cases were reported, the majority of which were caused by waste accumulation in river channels. One example is the flood in Gadingrejo Village, Central Java, which submerged 100 houses due to waste obstructing the river flow. This issue motivated the development of RiverEye, an intelligent system based on CCTV and anomaly detection to prevent floods caused by waste in urban river channels. The system is designed using Raspberry Pi cameras, a buzzer as an early warning alarm, and a mini-computer running Artificial Intelligence (AI) models. The research methodology integrates YOLOv8 for object detection of waste and humans, MediaPipe Pose for detecting littering gestures, and face recognition to identify the perpetrators. The system includes a Flask-based monitoring dashboard that displays real-time detection results and a WhatsApp bot for automatic reporting. Testing was conducted on five main functions, achieving an average success rate of 89%, including pose detection 93%, object detection 90%, face recognition 83%, alarm 80%, and WhatsApp bot integration 100%. The findings demonstrate that RiverEye can detect littering behavior quickly and accurately, providing early warnings of potential river obstructions. The system has the potential to be applied as an effective, efficient, and environmentally friendly AI-based disaster mitigation tool. Further research is recommended to expand the testing area, increase the river visual dataset, and develop flood prediction features based on historical data for sustainable implementation.