cover
Contact Name
Muhammad Sidik
Contact Email
jtik@provisi.ac.id
Phone
+6289671418611
Journal Mail Official
muhsidik@provisi.ac.id
Editorial Address
Jl. Majapahit No.304, Pedurungan Kidul, Kec. Pedurungan, Kota Semarang, Jawa Tengah 50192 Telp: (024) 6723456 E-mail : lppm@provisi.ac.id
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Teknologi Informasi dan Komunikasi
ISSN : 20870868     EISSN : 25989707     DOI : https://doi.org/10.51903/jtikp.v13i1
JTIK :Jurnal Teknologi Informasi dan Komunikasi merupakan Jurnal yang diterbitkan oleh LP2M Sekolah Tinggi Manajemen Informatika dan Komputer Provisi Semarang. Jurnal ini terbit 2 kali dalam setahun yaitu pada bulan April dan September. Misi dari Jurnal JTIK adalah untuk menyebarluaskan, mengembangkan dan menfasilitasi hasil penelitian inter-disiplin di bidang Teknologi Informasi dan Komunikasi, sistem komputer, informatika dan komunikasi sebagai media bagi para dosen, guru, peneliti dan para praktisi dalam bidang Teknologi Informasi dan Komunikasi, sistem komputer, informatika dan komunikasidari seluruh Indonesia, dalam melakukan pertukaran informasi tentang hasil-hasil penelitian terbaru yang telah dilakukan.
Articles 278 Documents
WEATHER FORECAST FROM TIME SERIES DATA USING LSTM ALGORITHM Yoga Estu Nugraha Nugraha; Ishak Ariawan; Willdan Aprizal Arifin
JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol 14 No 1 (2023): Maret
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtikp.v14i1.531

Abstract

Accurate weather forecasts play an important role in today's world as various sectors such as marine, navigation, agriculture and industry are basically dependent on weather conditions. Weather forecasts are also used to predict the occurrence of natural disasters. Weather forecasting determines the exact value of weather parameters and then predicts future weather conditions. In this study the parameters used are. Different weather parameters were collected from the Serang Maritime Meteorological Station and then analyzed using a neural network-based algorithm, namely Long-short term memory (LSTM). In predicting future weather conditions using LSTM neural networks are trained using a combination of different weather parameters, the weather parameters used are temperature, humidity, rainfall, and wind speed. After training the LSTM model using these parameters, future weather predictions are performed. The prediction results are then evaluated using RMSE. Prediction results show that the model is more accurate when predicting temperature data with RMSE 0.37, then RMSE wind speed 0.72, RMSE sunlight 2.79, and RMSE humidity 5.05. This means that the model is very good at studying weather data, inversely proportional to humidity data.
MAPPING THE DISTRIBUTION OF MANGROVES IN SERANG REGENCY USING REMOTE SENSING (CASE STUDY OF PULAU PANJANG) Amelia Luthfi Kamil Amel; La Ode Alam Minsaris; Della Ayu Lestari
JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol 14 No 1 (2023): Maret
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtikp.v14i1.535

Abstract

Mangroves are a multifunctional coastal ecosystem in coastal areas. Mangrove ecosystems can adapt to extreme coastal conditions, but are highly vulnerable to hazards such as regional degradation, species degradation, conflicts of interest, exploitation, and excessive mangrove use. Remote identification can help obtain the latest data related to the area of mangrove areas with time criteria and coverage of certain areas. The remote sensing used is Google Earth Engine (GEE). This study aims to be able to determine changes in the area of mangrove distribution and the level of density of mangrove ecosystems on Panjang Island, Serang Regency for the last 5 years from 2017 to 2021. The results of the distribution of mangrove areas in the span of 5 years from 2017 to 2021 the mangrove area on Panjang Island experienced a decrease in mangrove area by 5.47 ha. The level of mangrove density on Panjang island in the 5-year period from 2017 to 2021 is classified as a very rare mangrove density category.
USAGE OF FLUTTER FRAMEWORK IN DESIGN AND DEVELOP MLEARNING APPLICATION AND ITS EFFECTIVENESS ANALYSIS AMONG WORKERS IN BATAM CITY Syaeful Anas Aklani; Kelvyn
JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol 14 No 1 (2023): Maret
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtikp.v14i1.536

Abstract

Changes or additions of new employee in a company is a normal thing and can be happen anytime. The process of training and introducing to new employee is the initial stage carried out by company after accepting new employee, this process is called onboarding. This research aims to designing and developing mobile application that is used to train and introduce for new employee. The application is developed with RAD (Rapid Application Development) method and using flutter framework along with firebase as the data storage. This research also doing analysis to the effectiveness usage of the mobile application developed with TAM (Technology Acceptance Model) model. Variables that is used in the analysis are Perceived Ease of Use, Perceived Usefulness, and Attitude Towards Using. Sample of this research is all workers in the Batam city. The research method is quantitative and analyze with regression using SPSS application. This research proves that mobile application can be used to conduct employee training.
STUDI EKSPLORASI PENGARUH KONTEN KEKERASAN DALAM VIDEO GAME DAN TENDENSI AGRESI PADA SISWA SMA DI KOTA BATAM Hendi Sama; Jecky Fransisco
JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol 14 No 1 (2023): Maret
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtikp.v14i1.537

Abstract

This study aims to analyze the effect of violent content in video games related to situational factors and personal factors consisting of gender, age, aggression motivation, and aggressive personality and whether it influences aggressive behavior based on the General Aggression Model (GAM). This study has used quantitative and qualitative methods with a sampling technique that is random-stratified-proportional with the target being high school students in Batam city. In the quantitative method, as many as 400 respondents were obtained while in the qualitative method there were 30 respondents. The data analysis method used begins with a data quality test, namely the outlier test, validity test, and reliability test, then the regression test consists of the normality test, F test, T test, multicollinearity test, heteroscedasticity test, R and R2 test. The results of this study have shown that in the quantitative method the motivational factors of aggression and aggressive personality affect aggressive behavior while the results obtained from the qualitative method only that motivational factors of aggression influence aggressive behavior.
ANALYSIS OF SOFTWARE DEVELOPER PERCEPTIONS TOWARDS THE SELECTION OF JAVASCRIPT FRAMEWORK IN BATAM CITY Yefta Christian; Hengky Hengky
JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol 14 No 1 (2023): Maret
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtikp.v14i1.538

Abstract

Javascript Framework has been used by a lot of developer in Batam. There are many Javascript Framework with similar functionality. this research aims to find out the influence between performance expectancy, effort expectancy, social influence, and facilitating conditions on developer decision in using Javascript Framework. Our qualitative research have 30 respondent and our quantitative research have 359 respondent. This research used disproportionate random sampling and the method we used in this research is multiple regressions methods. The result of our hypothesis testing state that there is significant influence performance expectancy, effort expectancy, social influence, and facilitating condition to use behavior.
METODE ENTERPRISE ARCHITECTURE PLANNING DALAM SISTEM INFORMASI PENGELOLAAN DATA INVENTARIS Ahmad Ashifuddin Aqham; Edy Siswanto; Dendy Kurniawan
JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol 14 No 1 (2023): Maret
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtikp.v14i1.555

Abstract

Schools are formal government-owned or private institutions engaged in education, which are held for the community and aim to educate knowledge, self-development, skills and abilities. SMP Negeri 04 Cepiring is the first level educational institution that was established in 1998. So far, school inventory data processing has used MS. Word and MS Excel however, the process takes a long time so it is less effective and efficient. SMP Negeri 04 Cepiring requires an inventory data processing management information system to solve this problem. Inventory data processing information system was built using Enterprise Architecture Planning and using BDMS MySQL as database. The resulting inventory data processing management information system can perform data processing such as entry and exit data, data destruction, mutation or changes that are more accurate.
SISTEM ANALISIS POLA PEMBELIAN KONSUMEN MENGGUNAKAN ALGORITMA FP-GROWTH Danang Mahendra; Alzena Dona Sabilla
JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol 14 No 1 (2023): Maret
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtikp.v14i1.560

Abstract

Sistem pengelolaan penjualan sering kali hanya dimanfaatkan sebagai penyimpanan data transaksi, berapa banyak barang terjual dan hasil laba rugi dalam periode tertentu. Selain untuk hasil laba dan rugi, data transaksi dapat digunakan dalam tindakan dan strategi bisnis suatu usaha. Analisis pola pembelian konsumen dapat dilakukan dengan Teknik data mining yaitu Association Rule. Pola ini, dapat menjadi masukan dalam membuat tindakan dan strategi bisnis. Suatu pola ditentukan oleh dua parameter, yaitu support dan confidence. Analisis pola embelian konsumen ini menggunakan algoritma Frequent Pattern Growth (FP-Growth) dengan menerapkan FP-Tree untuk menemukan sebuah pola transaksi yang sering dilakukan oleh konsumen. Adapun hasil dari penelitian ini ada 2 rule dengan nilai support sebesar 33,33% dan nilai confidence 100% dengan minimum support 30% dan minimun confidence 70%.
PENERAPAN NAÏVE BAYES DALAM PROSES PENILAIAN KINERJA PEGAWAI KLINIK UTAMA BAITUL HIKMAH Edy Siswanto
JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol 12 No 2 (2021): September
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtikp.v12i2.285

Abstract

Employee performance appraisal at Baitul Hikmah Main Clinic still uses the conventional method by filling out forms & manually calculated. The head of the unit assesses the performance of each of its members from aspects or competencies for which there are no assessment indicators determined. This makes unit to evaluate each of its members as a result the evaluation process is considered less effective and causes subjective evaluations and causes cases between employees, for employee assessment to facilitate performance appraisals. The author makes an employee performance appraisal application using the Naive Bayes method easier to provide performance appraisals.
THE USE OF NAÏVE BAYES ALGORITHM IN FORECASTING THE FURTHER STUDY OF HIGH SCHOOL STUDENT Siti Nur Amalia; Maulana Wildan Rifaldi; Mega Aprilia Fajriati; Rona Nisa Sofia Amriza
JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol 14 No 2 (2023): September
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtikp.v14i2.373

Abstract

Schools with a large number of students who continue their studies to college will be the main choice as secondary schools from the elementary level. Therefore, increasing the number of students continuing their studies is very important to meet the competition. To get around this, schools can predict the continuation of high school/vocational high school students' studies to college. The goal is that the percentage of prediction results can be used as a reference for improving the quality of education services in schools. In making this prediction, the Naïve Bayes method or algorithm is used. In this case, the Naïve Bayes algorithm is a classification method with a probability and statistical approach that is suitable for predicting the continuation of high school/vocational high school students' studies to college. The prediction result of continuing study to university using Naïve Bayes on test data has an accuracy of 0.740.
KLASIFIKASI JENIS IKAN NEON DENGAN EKSTRAKSI FITUR GLCM DAN ALGORTIMA EXTREME LEARNING MACHINE Wahyu Hidayat; Dadang Iskandar Mulyana; Mesra Betty Yel
JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol 14 No 2 (2023): September
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtikp.v14i2.558

Abstract

Ikan neon adalah spesies ikan cantik yang populer, terutama di kalangan penggemar aquascape. Terdapat dua jenis ikan neon yaitu ikan neon tetra dan ikan kardinal yang masing-masing memiliki pola sisik yang berbeda, ikan neon tetra memancarkan kilatan warna biru dan neon merah yang memanjang dari pusat tubuh hingga ke bagian bawah otak. dan ikan neon cardinal memiliki lampu berwarna biru dan merah dari pangkal ekor hingga kepalanya. Namun, spesies ikan seringkali memiliki bagian tubuh, sirip, dan ekor yang mirip, sehingga sulit untuk mengidentifikasi spesies tersebut. Karena keterbatasan kemampuan mata manusia untuk membedakan ikan tetra dari neon kardinal, peneliti mengklasifikasikan ikan neon menggunakan teknik ekstraksi fitur Gray Level Co-occurrence Matrix (GLCM) dan Extreme Learning Machine (ELM) untuk membedakannya. Dataset citra yang dihasilkan adalah untuk mendapatkan nilai x dan y dari fungsi GLCM dengan membuat 1.915 sampel citra yang terdiri dari 954 citra Neon Tetra dan 961 citra Neon Tetra, dilanjutkan dengan 700 data latih dan 300 dataset uji. Didapatkan efisiensi 97,90% dan nilai Loss 2,10% pada penelitian ini menunjukkan hasil akurasi yang sangat baik.