cover
Contact Name
Seno Darmawan Panjaitan
Contact Email
-
Phone
-
Journal Mail Official
jurnal.elkha@untan.ac.id
Editorial Address
Department of Electrical Engineering, Faculty of Engineering, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, Pontianak 78124
Location
Kota pontianak,
Kalimantan barat
INDONESIA
ELKHA : Jurnal Teknik Elektro
ISSN : 18581463     EISSN : 25806807     DOI : http://dx.doi.org/10.26418
The ELKHA publishes high-quality scientific journals related to Electrical and Computer Engineering and is associated with FORTEI (Forum Pendidikan Tinggi Teknik Elektro Indonesia / Indonesian Electrical Engineering Higher Education Forum). The scope of this journal covers the theory development, design and applications on Automatic Control, Electronics, Power and Energy Systems, Telecommunication, Informatics, and Industrial Engineering.
Articles 285 Documents
Comparison Between Trot and Wave Gait Applied in Quadruped Robot Feriyonika Feriyonika; Noor Cholis Basjdaruddin; Martin Martin
ELKHA : Jurnal Teknik Elektro Vol. 15 No.1 April 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i1.58341

Abstract

A Quadruped robot is a type of robot that moves on four legs and has a structure like a four-legged animal. The quality of movement based on mechanics and movement patterns on quadruped robots tends to have poor movement patterns. This study investigates the best movement between trot and wave gait by comparing the speed performance, stopping distance accuracy, and the tilt of the robot body angle. To minimize the influence of the mechanical quality of the robot, this study used two robots based on the type of servo used (based on the SG90 and MG995 servos). In this study, the motion pattern based on Trot and Wave gait is realized using Inverse Kinematics and Polynomial trajectory on each leg. The verification experiment showed that the Wave gait has better in both the robot body angle and distance error. In contrast the Trot gait has better in speed.
Analysis of ITO/a-Si:H(p)/a-Si:H(i)/c-Si(n)/Al HIT (Heterostructure with Intrinsic Thin Layer) solar cell performances. Igor Levi Satriani; Rahmawati Munir; Adrianus Inu Natalisanto; Dadan Hamdani
ELKHA : Jurnal Teknik Elektro Vol. 15 No.1 April 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i1.61351

Abstract

Numerical simulation on HIT (Heterostructure with Intrinsic Thin Layer) solar cell using hetero-structure ITO/(p+)a-Si:H/(i)a-Si:H/(n)c-Si/Al solar cell has been done using AFORS-HET (Automate For Simulation of Heterostructure) software. The purpose of this study is to provide validation as well optimization model of solar cell enhanced performances. Data analysis shows a significant increase on solar power generation. An intrinsic thin layer given between the hetero-interface to reduce defect properties on solar cell structure. The optimization using an optimal value of acceptor-donor doping, dangling-bond defects ( ), thin conductive oxide work function ( ), and other input shows a reducing recombination-rates, as a validation Figure of Merits (FOMs) data reach a maximum efficiency value at 23,67% (  = 634,2 mV;  = 51,2 mA/cm2; = 72,91%, this result achieved on peak data such  = 5,2 eV, Na (doping) = 5.0 x 1019 cm-3,  = 1.0 x 1018 cm-3,  (interface defect) = 1.0 x 1010 cm-3. The results obtained from this simulation produce a number of optimum parameters that can be followed up experimentally to obtain better solar cell performances.
Design of Smart Home Security System With Face Recognition And Voice Command Based On Internet of Things Ketty Siti Salamah; Lutfi Arif Setiyawan; Imelda Uli Vistalina Simanjuntak
ELKHA : Jurnal Teknik Elektro Vol. 15 No.1 April 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i1.62042

Abstract

All individuals really need technology to accelerate development or enhance the development of both individuals and groups. A smart door lock is a feature embedded in a smart home to make everyday life easier. Given the importance of security for valuables stored in the house and the fact that security is required in accessing the house, the research was conducted with the goal of helping meet the needs of an easy-to-implement home security system. By utilizing the Raspberry Pi minicomputer as a processor, the webcam as a face detector, and Voice Command for detecting voice codes, which will then be processed by the Raspberry Pi using OpenCV to determine whether a human face is there or not, calculating the distance between facial features such as eyes, nose, and mouth as well as the code, the given vote is either true or false. After the face is recognized and the sound code is correct, the Raspberry Pi will issue an order to the servo to open the solenoid so that the home door can be accessed by the home owner, and there will be a message sent via telegram if someone tries to access this system. Based on the system tests that have been carried out, it turns out that the facial recognition system has an accuracy of 75%, a positive error of 25%, and a negative error of 0%, so it can be concluded that this system is safe enough to be applied in a home door security system.
Cabin Assembly Balancing Line on Welding Using Ranked Positional Weight Method Neneng Suryani; Lussiana ETP
ELKHA : Jurnal Teknik Elektro Vol. 15 No.2 October 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i2.68714

Abstract

The Indonesian automotive industry has become an essential pillar in the country's manufacturing sector. As production capacity increases, problems will also increase, including disparities in the level of efficiency and productivity of each sub-sector of the manufacturing industry in Indonesia. This problem occurs due to the need for a good process path, such as the uneven distribution of work tasks machines in the work process so that it is possible to harm the company, so a solution is needed to increase the efficiency of the production line. This research aims to improve production efficiency, particularly concerning the use of electricity costs and operator wages on the cabin type S L assembly line, by applying the Ranked Positional Weight (RPW) method. The research phases include data collection, analysis, processing, and evaluation. Based on the SL-type cabin calculations using the RPW method, the track efficiency improved by 4.69% from the initial conditions, while the track effectiveness increased by 75.02% to 79.71%. Increased the production line efficiency has impacted on the decrease in production costs Rp. 13,827,249/month.
Design and Implementation of 12-Bit Arithmetic Logic Unit with 8 Operation Codes to Field Programmable Gate Array Arwin Datumaya Wahyudi Sumari; Sukriya Hijriana; Denny Dermawan
ELKHA : Jurnal Teknik Elektro Vol. 15 No.2 October 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i2.64041

Abstract

Digital system has been a part of human life since the invention of the computer with a microprocessor as the central brain. At the heart of a processor is an Arithmetic Logic Unit (ALU) that handles arithmetic and logic operations. The need for high-speed computation to handle complex computations demands microprocessors with higher performance. The existing 4-opcode 8-bit ALU cannot handle multiplication operations, so a solution is needed. In this research, while raising the appeal of beginners, a 12-bit ALU with eight operation codes (opcode) was designed and implemented in Xilinx’s Field Programmable Gate Array using a schematic diagram approach through logic gates. The designed and implemented ALU provides addition, subtraction, multiplication, square, AND, OR, NAND, and XOR operations. The multiplication operation was tested by performing the computation to provided datasets to obtain the distance travelled by ten military aircraft based on their maximum speed and air travel duration to ensure its performance. The computation performance comparison with an 8-bit ALU with four opcodes was also done. The computation was done for air travel between 10 to 60 minutes with a 10-minute difference. It was found that the 12-bit ALU with eight opcodes outperformed its contender with computation differences between 130.815 ns and 1,468.214 ns. This high performance is supported by the multiply operation that does repeated addition at one time. Based on this finding, the 8-opcode 12-bit ALU is more efficient in the context of computation time, with consistent accuracy. Moreover, the computation time required to calculate military aircraft data with different maximum speeds and air travel duration is only 119.501 ns.
Computer Aided Classification of X-ray Images from Pediatric Pneumonia Subjects Collected in Developing Countries Yusuf Aziz Amrulloh; Bayu Dwi Prasetyo; Ummatul Khoiriyah; Hesti Gunarti; Dwikisworo Setyowireni; Rina Triasih; Roni Naning; Amalia Setyati
ELKHA : Jurnal Teknik Elektro Vol. 15 No.2 October 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i2.69981

Abstract

Pneumonia is a lower tract respiratory infection due to bacteria or viruses. It is a severe disease in the pediatric population. Pneumonia is the leading cause of mortality in children under five years worldwide. One of the problems with pneumonia is the diagnosis, as the symptoms of pneumonia may overlap with other diseases, such as asthma and bronchiolitis. In this work, we propose to develop a method for classifying pneumonia and non-pneumonia using X-ray images. We collected 60 X-ray images from Dr. Sardjito Hospital, Yogyakarta, Indonesia, and the dataset from Kaggle. We processed these images through pre-processing algorithms to enhance the image quality, segmentation, white pixel computation, and classification. The novelty of our method is using the ratio of the white pixels from edge detection using the Canny algorithm with the white pixels from segmentation for classifying pneumonia/non-pneumonia. In the Kaggle dataset, our proposed method achieved an accuracy of 86.7%, a sensitivity of 100%, and a specificity of 85%. The classification using the dataset from Dr. Sardjito Hospital yields sensitivity, specificity, and accuracy of 80%, 60%, and 66.7%, respectively. Despite the low performance in the results, we proved our novel feature, ratio of white pixels, can be used to classify pneumonia/non-pneumonia. We also identified that the local dataset is essential in the algorithm development as it has a different quality from the dataset from modern countries. Further, our simple method can be developed further to support pneumonia diagnosis in resource-limited settings where the advanced computing devices or cloud connection are not available.
Rotor Speed Analysis of SMC-based IFOC for Low-Speed Induction Motor Control Angga Wahyu Aditya; Ihsan Ihsan; Fachri Husaini; Faisal Faiiz Ramadhanu
ELKHA : Jurnal Teknik Elektro Vol. 15 No.2 October 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i2.67321

Abstract

The control of electric motors, particularly three-phase induction motors, has developed rapidly due to their application in industry. Indirect Field Oriented Control (IFOC) is one of the most widely used control systems due to its ease of application. IFOC controls a three-phase induction motor in the same way as a DC motor. However, IFOC requires a Sliding Mode Control (SMC) controller with Lyapunov stability theory to ensure robustness and stability. In exceptional conditions, such as low-speed settings, the SMC-based IFOC requires unique sets to operate with a steady-state error (Ess) at a speed response of less than 2%. Other parameters to be considered are rise time and electromagnetic torque response at low speeds. The addition of the boundary layer of the hyperbolic tangent function to a first-order SMC can increase induction motor (IM) control up to 175 rpm with a value of Ess = 1.96% compared to the saturation and signum functions, which are only capable of a reference speed of 300 rpm in no-load conditions with a value of Ess = 2% for the saturation function and 1.94% for the signum function. SMC with the hyperbolic tangent function boundary layer performs best under load conditions. The rising time value does not significantly differ under no-load or torque-load conditions between the SMC with the saturation, hyperbolic tangent function boundary layers and without the boundary layer. Adding a boundary layer with the hyperbolic tangent function can reduce ripple significantly compared to the saturation function under no-load or load conditions.
Heading control for quadruped stair climbing based on PD controller for the KRSRI competition Khairurizal Alfathdyanto; Adytia Darmawan; Ali Husein Alasiry; Ahmad Taufik
ELKHA : Jurnal Teknik Elektro Vol. 15 No.2 October 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i2.70381

Abstract

Quadruped, a robot that resembles four-legged animals, is developed for many purposes, such as surveillance and rescue. Such a caveat requires the robot to have the capability to overcome various terrain and obstacles. When moving across such a landscape, it is essential to maintain the robot's orientation steadily. Inclined terrains such as stairs have posed another challenge to the control strategy as the robot is unstable while climbing. Therefore, the contribution of this work is to address the need for heading control because of the relatively longer stairs used for the current competition compared to the past. The proposed control system simultaneously maintains the heading while keeping the body stable. The inertial measurement unit sensor carried by the robot would provide the pose needed for heading control calculations. The robot's heading becomes the base for the PD controller calculation. The final pose that stabilizes the robot while tackling heading error is a combination of correction from the PD controller and the stabilization part of the control strategy. Then, the leg servo angle determination deployed the inverse kinematics calculation from the suitable robot pose. The proposed method enabled the designed robot to maintain its heading with a 4.4-degree margin of error and stabilize the body. The quadruped also completes the stair climbing at the shortest time of 20 seconds with a speed of up to 5.5 centimeters per second.
Temperature and Humidity Control System for Pole-Mounted Metering Circuit Breaker with Artificial Neural Network Methods Mirza Ghulam Ahmad; Moh. Zaenal Efendi; Rachma Prilian Eviningsih
ELKHA : Jurnal Teknik Elektro Vol. 15 No.2 October 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i2.67933

Abstract

Pole-mounted Metering Circuit Breaker (PMCB) is a medium voltage protection device. Problems in the PMCB because operating at medium voltage causes insulation problems. The isolation problem that arises is due to partial discharge. Partial discharge can trigger the risk of flashover. In addition, corona discharge causes corrosion of the conductor, the effect is a failure and disconnection of electricity. This control system aims to maintain the temperature and humidity of the PMCB at the nominal values according to the standard. Based on SPLN D3.021-1:2020, it is known that under normal service conditions, the ambient air temperature does not exceed 40°C and the average temperature for 24 hours does not exceed 35°C and the highest relative humidity is 100% RH. The control system uses an AC voltage controller which is used to control the input voltage of the heater and exhaust fan so that the temperature and humidity can reach nominal operating conditions. The control method used is an artificial neural network (ANN) to find the ignition angle of the AC voltage controller as a TRIAC control. The test results using the ANN control method, system simulation produces a temperature error of 1.029% and humidity error of 2.48% and the hardware system produces a temperature error of 2.364% and humidity error of 8.673% compared to the set point temperature of 35°C and humidity of 50% RH. It can be concluded that the ANN control method can maintain the PMCB temperature and humidity according to standards
Wi-Fi Sensing for Indoor Localization via Channel State Information: A Survey Dwi Joko Suroso; Farid Yuli Martin Adiyatma; Panarat Cherntanomwong
ELKHA : Jurnal Teknik Elektro Vol. 15 No.2 October 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i2.70830

Abstract

Wireless Fidelity (Wi-Fi) sensing utilization has been widespread, especially for human behavior/activity recognition. It provides high flexibility since it does not require the person/object to carry any device known as device-free. This "passive" concept is also helpful for another application of Wi-Fi sensing, i.e., indoor localization. The "sensing" is conducted using particular parameters extracted from communication links of Wi-Fi devices, i.e., channel state information (CSI). This paper explores the recent trends in CSI-based indoor localization with Wi-Fi technology as its core, including their advantages, challenges, and future directions. We found tremendous benefits can be gained by employing Wi-Fi sensing in localization supported by its performance and integrability for other intelligent systems for activity recognition.