cover
Contact Name
Muji Setiyo
Contact Email
muji@unimma.ac.id
Phone
+6282330623257
Journal Mail Official
autoexp@unimma.ac.id
Editorial Address
Universitas Muhammadiyah Magelang, Jl. Bambang Soegeng KM. 4 Mertoyudan Magelang, Telp/Faks : (0293) 326945
Location
Kab. magelang,
Jawa tengah
INDONESIA
Automotive Experiences
ISSN : 26156202     EISSN : 26156636     DOI : 10.31603/ae
Automotive experiences invite researchers to contribute ideas on the main scope of Emerging automotive technology and environmental issues; Efficiency (fuel, thermal and mechanical); Vehicle safety and driving comfort; Automotive industry and supporting materials; Vehicle maintenance and technical skills; and Transportation policies, systems, and road users behavior.
Articles 18 Documents
Search results for , issue "Vol 5 No 3 (2022)" : 18 Documents clear
An Experimental Study of the TEG Performance using Cooling Systems of Waterblock and Heatsink-Fan Nugroho Tri Atmoko; Agus Jamaldi; Tri Widodo Besar Riyadi
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6250

Abstract

Two third of the total energy in the internal combustion engine (ICE) system is lost and turns as waste heat through the exhaust system and coolant circulations. Therefore, it is necessary to have a technology that is able to convert waste heat from ICE into electrical energy using thermal electric generator (TEG). To have the best thermoelectric generator (TEG) performance in terms of higher electricity generation, the temperature on the hot surface should be higher, and the temperature on the cold surface should be as low as feasible. The goal of the study was to study how differences in TEG cooling systems affected the overall performance. Water block and heatsink-fan are two different types of cooling systems that have been used in this experiment. The water flow rate in water block cooling systems varies between 200, 300, 400, 500, and 600 l/h. The TEG module was heated with gas-fired lighters. Arduino-based data loggers were used to record hot and cold temperatures on the TEG surface. A USB multimeter is used to measure TEG performance as electrical voltage. The results showed that 300 l/h was the best water flow rate for TEG cooling. When using a water block cooling system instead of a heat sink, the electrical voltage generated by the TEG module is 12 percent higher. This study found that a cooling system with water blocks is superior to heatsink-fan.
Acetone-Butanol-Ethanol as the Next Green Biofuel - A Review Sri Mumpuni Ngesti Rahaju; Ibham Veza; Noreffendy Tamaldin; Ahmed Sule; Anthony C. Opia; Mohammed Bashir Abdulrahman; Djati Wibowo Djamari
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6335

Abstract

The development of diesel engines faces challenging targets to satisfy stringent emissions regulation. To address this issue, the use of alcohol biofuels such as methanol and ethanol has attracted numerous attention due to their physicochemical properties and the possibility to be produced from renewable sources and agricultural waste material. Compared to ethanol, longer carbon alcohol such as butanol has higher energy density and lower latent heat, hygroscopicity, aggressivity, and toxicity. It can also be produced from biomass. Yet, despite its noticeable advantages, the use of butanol in the internal combustion engine is hindered by its low production efficiency. If Acetone-Butanol-Ethanol (ABE) is further distilled and purified, pure butanol and ethanol can be acquired, but this involves an energy-intensive process, thus increasing the production cost of butanol. To solve this problem, the direct use of ABE as a biofuel is considered a promising strategy. The idea of using ABE directly in internal combustion engines is then proposed to solve the economic issue of high butanol production costs. A scoping literature review was performed to screen and filter previously published papers on ABE by identifying knowledge gaps instead of discussing what is already known. Therefore, repeated and almost identical studies were eliminated, thus reporting only the most significant and impactful published papers. In terms of the objective, this article aims to review the progress of ABE as a promising biofuel in regard to the engine performance, combustion, and emission characteristics. Focus is also given to ABE’s physicochemical properties. Despite their considerable importance, the fuel properties of ABE are rarely discussed. Therefore, this review article intends to analytically discuss the physicochemical properties of ABE in terms of their calorific value, density, kinematic viscosity, and distillation. In general, it is concluded that engine emissions such as NOx and Particulate Matter (PM) could be reduced considerably with the use of ABE. Yet, the BSFC was found to increase due to the relatively lower calorific value and density of ABE blends as opposed to gasoline or diesel fuel, thereby increasing its fuel consumption. In terms of ABE’s fuel properties, in general, ABE can be used due to its satisfying physicochemical properties. However, it should be noted that the ABE-gasoline/diesel blends are greatly influenced by each of its component ratios (acetone, butanol, ethanol).
Resin Matrix Composition on the Performance of Brake Pads Made from Durian Seeds: From Computational Bibliometric Literature Analysis to Experiment Asep Bayu Dani Nandiyanto; Dwi Novia Al Husaeni; Risti Ragadhita; Meli Fiandini; Dwi Fitria Al Husaeni; Muhammad Aziz
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6852

Abstract

The purpose of this study was to analyze the effect of a resin composition on the performance of brake pads with durian seeds (BDs) as the base material. Experiments were done by attaching saw-milled BD particles to a polymer matrix. Various resin compositions were used for preparing the brake pad, which was then tested (press test, puncture test, and friction test). Physical properties (i.e., particle size, surface roughness, morphology, and density), as well as mechanical properties (ie: hardness, wear rate, and friction coefficient properties), were investigated. Based on observations, the best mechanical properties were found in the highest resin mixture, reaching a compressive strength value of 2.4 MPa. The impact of the homogeneity of the brake pad filler particles is the main reason. The high resin composition causes more cross-links to be formed. This research demonstrates the prospective environmentally friendly and inexpensive brake pads used to replace current products that use hazardous materials.
Comprehensive Review of Nanoparticles Dispersion Technology for Automotive Surfaces Sharifah Norsakinah Syed Zainal Abidin; Wan Hamzah Azmi; Nurul Nadia Mohd Zawawi; Anwar Ilmar Ramadhan
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6882

Abstract

Many innovations arose from the continual and thorough monitoring of overlooked characteristics of materials found in the environment. Automotive paints are always constantly exposed to a broad range of ambient temperature conditions, which reduces their longevity and encourages algae development. Through the effective incorporation of nanotechnology with this lotus effect, it has become possible to provide self-cleaning ability along with air purification and antibacterial performance to automotive surfaces like paint and coating. The addition of nanoparticles such as Titanium dioxide (TiO2) and Silicon dioxide (SiO2) helps to improve functionalities like water or stain resistance, ultra-violet protection, and scratch resistance. When the nanoparticles were added into paint, they degraded the polluting compounds on the material's surface by photo catalysis. Multiple photocatalytic functions and self-cleaning properties were observed in nanoparticles added to polyester acrylic paint. Therefore, this paper discussed the history of automotive painting, nanopaint technology, previous research on the method preparation, development, and current progress, the environmental health aspects of nanotechnology, as well as the performance in terms of automotive surfaces. The study discovered the requirements for nanoparticle dispersion and coating uniformity and appearance on automotive surfaces, which will serve as a benchmark for dispersion and coating methods for automotive surfaces.
The Effects of Canola Oil/Diesel Fuel/Ethanol/N-Butanol/Butyl Di Glycol Fuel Mixtures on Combustion, Exhaust Gas Emissions and Exergy Analysis Salih Ozer; Mehmet Akçay; Battal Doğan; Derviş Erol; Muji Setiyo
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7000

Abstract

In recent years, there have been many studies on the widespread use of liquid fuels derived from biomass. A common emphasis in such studies is on fewer exhaust gas emissions and the expansion of renewable fuel production. Biodiesel is considered to be an important type of biomass fuel that is already produced commercially. But the production of biodiesel is laborious and comprises combination of several chemical processes. This study examines the effects of using oil used in biodiesel production with oxygen-rich chemicals on combustion (in-cylinder pressure (Cp), heat release rate (HRR), rate of pressure rise (RoPR), and cumulative heat release (CHR)), exhaust emission values, energy and exergy analysis. In this study, the effects of butyl di glycol use were also investigated and compared with commercially used ethanol and n-butanol. A transesterification method produced from canola oil the biodiesel used in the experiments. The experimental fuels were mixed volumetrically. For this purpose, experiments were carried out with canola biodiesel produced at 20% (D80B20) in diesel fuel and the results of the experiments were recorded. Under the same conditions, experiments were carried out by adding ethanol (D60C20E20), n-butanol (D60C20B20), butyl di glycol (D60C20G20) at a rate of 20% by volume to the canola oil added to the diesel fuel. The lowest values in terms of thermal and exergy efficiency were obtained in D60C20G20 fuel at all engine loads. Also, the highest entropy generation was calculated at all engine loads for this fuel blend.
Multi-objective Optimization of Sansevieria Trifasciata Fiber Reinforced Vinyl Ester (STF/VE) Bio-composites for the Sustainable Automotive Industry Apang Djafar Shieddieque; Mardiyati Mardiyati; Sukarman Sukarman; Bambang Widyanto; Yulfian Aminanda
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7002

Abstract

Bio-composite materials have taken an extensive interest in research over the years due to their excellent properties, such as excellent mechanical and physical properties, stiffness, and low density/lightweight. The exceptional properties of bio-composite materials have had a widespread application in several industries, such as; the packaging industry, construction, automotive, and other related engineering fields. This research investigates mechanical, physical, and microstructure properties of Sansevieria Trifasciata (STE) natural fiber, -reinforced Vinyl Ester (STF/VE) bio-composite. The mechanical and physical properties of STF/VE bio-composites, including the tensile strength and density, are investigated through fibre preparation, orientation, and fibre volume fraction parameters. The STF/VE bio-composite tensile strength coupon is manufactured using the bio-composite transfer moulding (BTM) process and with pressure moulding. The Taguchi experimental design and analysis of variance (ANOVA) are selected to investigate the effect of variables on the mechanical properties model. The alkali preparation of STF, unidirectional fibre orientation, and fibre volume fraction improve tensile strength. Non-alkali treatment and random fibre orientatio, on the other hand, result in a reduction of density. The results of the ANOVA analysis show that the fibre volume fraction (wt.%) is the variable that most significantly affects the tensile strength and density responses, with contributions of 50.57% of tensile strength and 51.34% of density, respectively. Based on the optimization results, the STF/VE with alkali treatment, unidirectional, and 15 w.t.% is chosen as the best bio-composite formulation, with the best tensile strength-density balance. It indicates that the optimum parameter was successfully achieved among the samples examined in this work.
A Review of the Emission, Performance, Combustion, and Optimization Parameters in the Production of Biodiesel from Waste Cooking Oil Dae Ho Park; Feyisola Idowu Nana; Haeng Muk Cho
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7005

Abstract

With the rising consumption of energy comes the challenge of the depletion of fossil fuels. Fossil fuels are non-renewable and finite energy sources with increasing energy demand as a result of the rise in human population and industrialization. This concern has led researchers to seek alternative energy sources that are both economically, technically viable, and environmentally beneficial. Biodiesel is considered an alternative source of energy supply. It is non-toxic, biodegradable, carbon-neutral, and ecologically friendly. However, the high cost of producing biodiesel from feedstocks impedes its commercialization. Hence, WCO used in the production of biodiesel helps to reduce the overall cost of production. The characteristics of the performance, emission, and combustion of the biodiesel produced from the transesterification of WCO are reviewed in this study. The molar ratio of methanol to oil, the concentration of the catalyst, reaction temperature, and time were used to investigate the optimization parameter required in the synthesis of biodiesel from WCO. The number of times the catalyst can be reused while maintaining a good catalytic activity in biodiesel production was also studied. The optimization models and techniques for the prediction of biodiesel yield were also studied.
The Effect of Surface Hardening on The HQ 705 Steel Camshaft Using Static Induction Hardening and Tempering Method Sri Nugroho; Deni Fajar Fitriyana; Rifky Ismail; Thesar Aditya Nurcholis; Tezara Cionita; Januar Parlaungan Siregar
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7029

Abstract

Induction hardening (IH) is a popular choice for automotive components such as camshafts for its ability to harden portions of a component selectively. The camshaft will contact the tappet, connected to the rocker arm, to open and close the valve whenever the engine is running. This contact between the camshaft and the tappet causes wear on the camshaft surface. IH of the camshaft is required to improve wear resistance and service life, as well as core elasticity to absorb high torsional stresses. It is known that studies about IH on camshafts are still very limited. This study aims to determine the effect of the induction hardening and tempering treatment on the mechanical properties of the camshaft made of HQ 705 steel. The induction hardening carried out in this study uses different parameter settings such as heating time and output current. The camshaft specimen is hardened by static induction and then quenched in oil. The specimens are tempered after induction hardening with different temperatures and holding times to adjust the hardness level and reduce brittleness. Hardness, macro photographs, micrograph, and wear tests were conducted to determine the mechanical properties of the camshaft specimen after the induction hardening and tempering process. This study indicates that induction hardening with an output current of 747 A for 15 seconds followed by tempering at 150 °C for 15 seconds on specimen 1 produced the best mechanical properties. On the surface of these specimens found more martensite content while there was no microstructural change on the inside. The surface hardness of these specimens is 44 HRC (Rockwell C Hardness), while the inside is 26 HRC. Meanwhile, specific wear decreased by 45.45%.
Aerodynamic Characteristics of Ahmed Body with Inverted Airfoil Eppler 423 and Gurney Flap on Fastback Car Zainal Arifin; Suyitno Suyitno; Dominicus Danardono Dwi Prija Tjahjana; Wibawa Endra Juwana; Rendy Adhi Rachmanto; Chico Hermanu Brillianto; Ubaidillah Ubaidillah; Singgih Dwi Prasetyo; Arinal Falah Muhammad; Mohd Afzanizam Mohd Rosli
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7067

Abstract

The installation of aerodynamic devices, such as rear wings with the application of a Gurney flap, is very important to improve the performance of vehicles and can generate downforce and reduce slip when a car turns and brakes. The goal of this study was to determine the aerodynamic characteristics of the addition of a rear wing using an Eppler 423 airfoil, which was applied with a Gurney flap featuring variations in the angle of attack and the height of the Gurney flap. The rear wing was mounted on the Ahmed body with a rear slant angle of 15°, which is similar to the configuration on a fastback type car. This research was conducted by 3D modeling through computational fluid dynamics (CFD) simulation using ANSYS Student R18.2 by using ahmed body design. There are three variations in the angle of attack for the rear wing (0°, 7.5°, and 15°), as well as five variations in Gurney flap height of 0%, 0.5%, 1%, 1.5%, and 2% for the chord-line length. In this study, the best variation was found at an angle of attack of 15⁰ with a height of 2% C. From this configuration improved CL/CD ratio by 25.36% when compared to the results without a Gurney flap.
Electric Delta Trike Stability Characteristic and Maneuverability Analysis: Experiment and Multi-Body Dynamic Simulation Ignatius Pulung Nurprasetio; Robby Dwianto Widyantara; Bentang Arief Budiman; Rakshidatu Lestaluhu; Djati Wibowo Djamari; Farid Triawan; Muhammad Aziz
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7070

Abstract

This paper reveals the stability characteristics of an electric-powered delta trike (e-trike), which is developed for goods delivery services. The changeable center of gravity position and weight due to electric component placement and the carried good weight can cause instability of the e-trike. Three main parameters are firstly evaluated on the e-trike: 1) geometry, 2) center of gravity, and 3) stiffness and damping coefficient of the suspensions. Single Lane-Change (SLC) and Double Lane-Change (DLC) tests were then conducted following ISO 14791:2000 and ISO 3888-1:2018 standards, respectively. An e-trike model was created and simulated using SIMPACK, a multi-body dynamic software. The simulation results showed that the developed e-trike model can replicate SLC and DLC tests, indicating the model was valid. A parametric study with the validated model was then conducted with various e-trike weights, center of gravity position, and suspension stiffness and damping ratio values. The results showed additional weight and higher center of gravity position can decrease threshold velocity to avoid rollover. The low suspension stiffness also contributed to lower the threshold velocity. However, the damping coefficient value did not change the threshold velocity significantly. These results can be a guideline in designing a delta trike with better performance in stability and maneuverability.

Page 1 of 2 | Total Record : 18