cover
Contact Name
Muji Setiyo
Contact Email
muji@unimma.ac.id
Phone
+6282330623257
Journal Mail Official
autoexp@unimma.ac.id
Editorial Address
Universitas Muhammadiyah Magelang, Jl. Bambang Soegeng KM. 4 Mertoyudan Magelang, Telp/Faks : (0293) 326945
Location
Kab. magelang,
Jawa tengah
INDONESIA
Automotive Experiences
ISSN : 26156202     EISSN : 26156636     DOI : 10.31603/ae
Automotive experiences invite researchers to contribute ideas on the main scope of Emerging automotive technology and environmental issues; Efficiency (fuel, thermal and mechanical); Vehicle safety and driving comfort; Automotive industry and supporting materials; Vehicle maintenance and technical skills; and Transportation policies, systems, and road users behavior.
Articles 221 Documents
Performance and Emissions Analysis of BE85-Gasoline Blends on Spark Ignition Engine Hendry Y. Nanlohy; Helen Riupassa; Marthina Mini; Herman Tjolleng Taba; Basri Katjo; Nevada JM Nanulaitta; Masaki Yamaguchi
Automotive Experiences Vol 5 No 1 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (771.632 KB) | DOI: 10.31603/ae.6116

Abstract

This study aims to reveal the performance and exhaust emissions of a spark ignition (SI) engine fueled by a gasoline-bioethanol mixture. The main performance characteristics of the SI engine tested are torque, power output; thermal efficiency, brake specific fuel consumption, and brake mean effective pressure. Meanwhile, the exhaust emissions seen are carbon monoxide and hydrocarbons. The test is carried out by comparing the performance of the SI engine under standard conditions without modification with gasoline fuel, with the SI engine with modification with 85% bioethanol fuel. The mass flow of fuel is regulated by modifying the carburetor choke at 3/4 and 7/8. The results show that although slightly lower than gasoline, in general, it can be seen that bioethanol can improve SI engine performance and produce environmentally friendly exhaust emissions.
Combustion Analysis of Ammonia/Oxygen Mixtures at Various Equivalence Ratio Conditions Using a Constant Volume Combustor with Sub-chamber Bin Guo; Mitsuhisa Ichiyanagi; Makoto Horie; Keita Aihara; Takuma Ohashi; Abiyasu Zhang; Takashi Suzuki
Automotive Experiences Vol 4 No 3 (2021)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (879.095 KB) | DOI: 10.31603/ae.6132

Abstract

The greenhouse effect issue is becoming more serious, and renewable energy is playing an increasingly important role. Among all alternative fuels, ammonia has been attracting attention as a carbon-free energy carrier for hydrogen, because of its large energy density per volume and easy storage and transportation. On the other hand, ammonia has a low combustion speed, which is an important issue for the use of ammonia as a vehicle fuel. To increase the mean flame speed of ammonia, the present study used the burned gas ejected from the sub-chamber for the compression of the mixture in the main chamber and the promotion of its HCCI combustion. Thus, the constant volume combustor with sub-chamber was used to realize the above combustion and to study the combustion characteristics of ammonia and oxygen mixture. In the experiments, initial pressure and initial temperature were unchanged and only the equivalence ratio was changed. The combustion pressure data were recorded and analyzed. As the result, the maximum combustion pressure (2.5 MPa) was obtained when the equivalence ratio was 0.4. The combustion speed was the fastest when the equivalence ratio was 0.6, and the mean flame speed was about 57.5 m/s.
Rollover Stability Analysis and Layout Optimization of a Delta E-trike Fitri Endrasari; Djati Wibowo Djamari; Bentang Arief Budiman; Farid Triawan
Automotive Experiences Vol 5 No 2 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1286.65 KB) | DOI: 10.31603/ae.6136

Abstract

This study derives a rollover index for a delta E-trike. Past works derive the rollover index by considering lateral centrifugal force only. In contrast, this study proposes a rollover index which is derived under the assumption that the centrifugal force act in both lateral and longitudinal direction. This assumption will give a result closer to the real-life application. In addition, a parametric study on the effect of center of gravity location on rollover index is also proposed. The study continued with the layout assessment, which is done as the considerations in rearranging the powertrain components inside the E-trike. The comparison between initial and new layout shows that the new arrangement gives several advantages to the delta E-trike.
Elemental, Thermal and Physicochemical Investigation of Novel Biodiesel from Wodyetia Bifurcata and Its Properties Optimization using Artificial Neural Network (ANN) Aditya Kolakoti; Bobbili Prasadarao; Katakam Satyanarayana; Muji Setiyo; Hasan Köten; Metta Raghu
Automotive Experiences Vol 5 No 1 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1054.144 KB) | DOI: 10.31603/ae.6171

Abstract

In this study, an unexplored oil from the wodyetia bifurcata fruit was used for biodiesel production. The transesterification process was implemented to convert the raw oil into wodyetia bifurcata methyl ester (WBME) and the influence of process variables on WBME yield was examined with the response surface method (RSM) assisted Box-Behnken optimization. The results of RSM show that a maximum biodiesel yield of 94.67% was achieved and reaction time was identified as an influencing process variable. The fatty acid composition (FAC) from chromatography reveals the presence of highly unsaturated in WBME and the significant fuel properties of thermal and molecular meet the required fuel standards (ASTM). The obtained fuel properties of WBME are compared with other popularly used biodiesels and observed low kinematic viscosity (3.87mm2/sec) and moderated cetane number (53) for WBME. Furthermore, artificial neural network (ANN) tools are used for the prediction of WBME yield and show an improvement of 0.4% than RSM and low mean square error and a high coefficient of correlation was observed for ANN.
Performance Optimization of Automotive Air-Conditioning System Operating with Al2O3-SiO2/PAG Composite Nanolubricants using Taguchi Method Nurul Nadia Mohd Zawawi; Wan Hamzah Azmi; Mohd Fairusham Ghazali; Anwar Ilmar Ramadhan
Automotive Experiences Vol 5 No 2 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (827.11 KB) | DOI: 10.31603/ae.6215

Abstract

The performance of an automotive air-conditioning (AAC) system is influenced by a variety of operating conditions. This can be addressed by employing optimization techniques that can suggest the appropriate parameters for the best results. In this study, the optimum operating conditions for a composite nanolubricants-fuelled AAC system were investigate using Taguchi's design of experiment approach and analysis of variance (ANOVA). The motor speed value, initial refrigerant charge, and composite nanolubricants composition ratio were chosen as operating parameters to investigate the AAC system performance, focusing on the coefficient of performance (COP) and compressor work. Orthogonal arrays (ORs) L25 (56) was selected to determine the optimum operating parameters of the AAC system. The optimum values for speed, refrigerant mass, and composition ratio were determined to be A4B1C5 (60:40, 900 rpm and 155 g), respectively. The motor speed was the significant factor influencing both COP and compressor performance by 78.13% and 89.29%. A confirmation test was conducted with the optimum levels of AAC system parameters to verify the efficiency of the Taguchi optimization method. The validation between the optimization results and the experimental results yielded a maximum error of 9.85%, indicating that the findings of this investigation were acceptable.
Strategy for Safe Passenger Transport during the COVID-19 Pandemic: From Review to Recommendation Retno Rusdjijati; Sumarno Adi Subrata; Zulfikar Bagus Pambuko; Muji Setiyo; Marcin Noga
Automotive Experiences Vol 5 No 2 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1141.069 KB) | DOI: 10.31603/ae.6593

Abstract

The COVID-19 pandemic caused a large-scale disruption to countries worldwide particularly in road traffic changes and people mobility. To respond to this, a titanic amount of published studies had investigated those concerns. However, a study describing mitigation efforts relating to this pandemic in the transportation sector is scarce. On the other hand, the lack of coordination between transportation authorities, public transport operators, and passengers triggers complex issues including the accumulation of passengers at bus stations that potentially increase virus transmission. For this reason, this article intends to investigate and establish strategies for safe passenger transport. The finding of the article presented four basic strategies as follows: First, a coordinated response among stakeholders and government is needed to develop comprehensive policies. Second, coordinated demand management is required to maintain a balance between government policies and citizen demands. Third, provide health education on Personal Protective Equipment (PPE) to public transport crews. Fourth, protecting the passengers and maintaining trust in public transport services. Additionally, it is recommended to provide adequate infrastructure, perform regular check-ups (i.e. assessing body temperature before entering public transportation), provide up-to-date COVID-19 health alert, and implement health protocol. Also, when this pandemic is over, the use of fuel-based transportation needs to be reduced, especially for short trips. To optimize this strategy, the role of government and health authorities on the policy side is crucial. Also, a good response from public transport operators and passengers is the key to defeat the COVID-19 pandemic in the transportation area.
Renewable and Sustainable Green Diesel (D100) for Achieving Net Zero Emission in Indonesia Transportation Sector Indra Chandra Setiawan; Muji Setiyo
Automotive Experiences Vol 5 No 1 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (299.18 KB) | DOI: 10.31603/ae.6895

Abstract

Because of the significant demand for fuels in the transportation sector in Indonesia, as well as concerns about energy security and global warming, renewable, sustainable, and alternative energy sources such as biofuels are required to replace petroleum-based fuels. Promoting the production of green diesel from crude palm oil (CPO) using palm fatty acid distillate (PFAD) as its byproduct will make the overall process more efficient and environmentally friendly in Indonesia. As a result, CPO-based diesel production will be a green and high-value sector. By replacing fossil diesel with green diesel, a sustainable energy source can be assured without further depleting current fossil fuels, leading to cleaner and greener energy in the future and meeting the net-zero aim by 2060.
Body City Car Design of Two Passengers Capacity: A Numerical Simulation Study Randi Purnama Putra; Dori Yuvenda; Muji Setiyo; Andrizal Andrizal; Martias Martias
Automotive Experiences Vol 5 No 2 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6304

Abstract

A city car is needed to overcome congestion and parking spaces in urban areas. However, currently, the body design of the city car is still experiencing problems, namely the value of the large drag coefficient, which causes an increase in fuel consumption. This study aims to design a city car body with two passengers that is more aerodynamic so as to minimize fuel use. This research method is a numerical simulation model using the ANSYS fluent students version 2021. Parameters in the form of drag coefficient values, velocity streamlines and velocity contours on the city car are aerodynamic aspects that are analyzed. The results show that the dimensions of the designed city car have a length of 2.59 m, a width of 1.6 m, and a height of 1.52 m by considering the ergonomic parameters and comfort of the user so that it fits the character of the people in Indonesia. In addition, from the independence grid analysis performed, the value of the number of meshes that have the smallest error value is obtained, namely mesh C (the number of meshes is 129,635). Mesh C has an error of 7.2%. It was found that as the velocity increases, the value of the drag coefficient (CD) produced is relatively smaller. In a city car with a velocity of 10 m/s, the drag coefficient value is 0.599, at a velocity of 20 m/s, the drag coefficient value is 0.594, and a velocity of 30 m/s is a drag coefficient value of 0.591.
Recent Advances in Diesel-Biodiesel Blended with Nano-Additive as Fuel in Diesel Engines: A Detailed Review Ahmed Sule; Zulkarnain Abdul Latiff; Mohammed Azman Abbas; Ibham Veza; Anthony C. Opia
Automotive Experiences Vol 5 No 2 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6352

Abstract

Global emission of gases has increased rapidly due to higher combustion of fossil fuels arising from increasing world population which has led to a greater number of manufacturing industries and ‘on-road vehicle (ORV)’ users. Researchers have attributed cause of global warming to gases emissions which correspondingly lead to climate change with devastating repercussions. Currently, climate change is a general issue and world leaders have been tasked to cut down emissions of gases that directly affect the ecosystem and influence climate change. Biodiesel which is an alternative to fossil fuels face many challenges and to tackle some limitations with biodiesel researchers blends biodiesels in various proportional ratio to diesel fuel. This paper, therefore, concentrates on reviewing the use of additives specifically nano-additives by researchers recently to alter and boost desired characteristics in diesel-biodiesel fuel; it also examines the synthesis of nano-additives; challenges, and advances made. This paper further analysed, reviewed, and compared recent results from nano-additive use with respect to emissions, fuel consumption, brake thermal efficiency, and engine power, establishes the merits and demerits of diverse nano-additives, and finally presents a conclusive opinion on nano-additive usage with diesel fuels in diesel engines.
Exhaust Gas Emissions of Homogeneous Gasoline-Methanol-(Ethanol) Blends Budi Waluyo; Bagiyo Condro Purnomo
Automotive Experiences Vol 5 No 2 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6599

Abstract

In recent years, one of the most logical efforts made to reduce the dependence on fossil energy sources is the use of a gasoline-methanol fuel blend. However, the problem in using a gasoline-methanol blend as fuel is that the methanol will eventually separate itself from the gasoline unless they are properly blended together, this is because methanol has a polar hydroxyl group called monohydric that binds water vapor together, causing the mixture to separate. Previous research showed that adding a small amount of ethanol to the gasoline-methanol blend makes it a homogeneous blend. Therefore, this research aims to identify the exhaust emissions of the homogenous gasoline-methanol-(ethanol) blend. For each blended fraction was tested on a single-cylinder four-stroke engine. The emission test is carried out in two stages which include the gasoline mode, and the alcohol mode. These two measurement modes undergo a validation process to correct the differences in the measurement results of the gasoline-methanol-ethanol blends. The test results show that increasing the methanol fraction in the gasoline-methanol-(ethanol) fuel blend results in reduced emission of carbon monoxide and unburnt hydrocarbon because methanol has a high enthalpy of evaporation, which increases both volumetric efficiency and complete combustion. In addition, the increase in the methanol fraction in the gasoline-methanol-(ethanol) blend showed a higher increase in carbon dioxide emissions. This is because methanol and ethanol have a much lower energy content than gasoline. Therefore, its energy production per unit time requires more fuel molecules.

Page 8 of 23 | Total Record : 221