cover
Contact Name
Moh. Heri Hermiyanto
Contact Email
redaksipsg@gmail.com
Phone
+6281223388976
Journal Mail Official
redaksipsg@gmail.com
Editorial Address
Sekretariat Redaksi Jurnal Geologi dan Sumberdaya Mineral Pusat Survei Geologi, Badan Geologi, Gedung A, Lantai 1 Jalan Diponegoro No. 57, Bandung, Indonesia
Location
Kota bandung,
Jawa barat
INDONESIA
Jurnal Geologi dan Sumberdaya Mineral (Journal of Geology and Mineral Resources)
Published by Pusat Survei Geologi
ISSN : 08539634     EISSN : 25494759     DOI : https://doi.org/10.33332
Core Subject : Science,
The JGSM acts as a publication media of high quality scientific investigations resulted from various geological scientific issues. Published articles covers Geo-sciences, Geo-resources, Geo-hazards, and Geo-environments. Geo-sciences are basic earth sciences in geology, geophysics, and geochemistry. Geo-resources are applied earth sciences scoping in geological resources. Geo-hazards are applied earth sciences concerning in geological hazards. Geo-environments are applied earth sciences focusing in environmental geology.
Articles 482 Documents
Depositional Environment and Source Rocks Potential of the Miocene Organic Rich Sediments, Balikpapan Formation, East Kutai Sub Basin, Kalimantan Asep Kurnia Permana, ST.,M.Sc.; Yoga Andriana Sendjaja; Hermes Panggabean; Lili Fauzely
Jurnal Geologi dan Sumberdaya Mineral Vol. 19 No. 3 (2018): Jurnal Geologi dan Sumberdaya Mineral
Publisher : Pusat Survei Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33332/jgsm.geologi.v19i3.407

Abstract

The fluvial to deltaic sediments of the onshore petroleum prolific of the Mahakam Delta in the East Kutai Sub-basin constrain organic rich sediments particularly within the Balikpapan Formation. This formation has been recognized as a source rocks of the conventional oil and gas production in the Kutai Basin. However, the geochemical studies to understand the origin of organic matter and paleo-environmental condition of this formation are still limited. A 390 selected samples of organic rich sediments from the Balikpapan Formation were analyzed by using organic petrographic and geochemical analyses. These analyses were used to define the sedimentary organic matter and moreover the paleo-environment conditions during deposition and their implication to the source rocks and hydrocarbon potential. The organic rich shales and mudstones of this sediment have high total organic content (TOC) values in range of 0.05% – 15.63% and coals are ranging from 2.25% to 57.11%. They are and mainly dominated by vitrinite maceral, with minor liptinite and inertinite. The minerals mostly consist of clay minerals, with minor pyrite and oxide minerals (quartz and carbonates). Rock Eval Pyrolisis analysis results show low hydrogen index (HI) values (4 to 248.52mgHC/g TOC) and predominance of vitrinite maceral reveal prevalence of terrestrially derived type III organic matter and their potential to generate gas. The max temperature values which is ranging from 411 to 435°C and Ro ranges 0.7% - 0.64% implies a low to moderate thermal maturation levels for an active source rocks. The organic matter accumulation is mainly associated with black shales and coals in the delta plain environment, derived from terrigenous organic matter.Keyword: Depositional environment, source rocks, Balikpapan  Formation, Kutai Basin.
Pemodelan Nikel Laterit Berdasarkan Data Resistivitas Di Daerah Kabaena Selatan Kabupaten Bombana, Provinsi Sulawesi Tenggara Budy Santoso; Subagio Subagio
Jurnal Geologi dan Sumberdaya Mineral Vol. 19 No. 3 (2018): Jurnal Geologi dan Sumberdaya Mineral
Publisher : Pusat Survei Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33332/jgsm.geologi.v19i3.408

Abstract

The lateritic nickel precipitate in the South Kabaena region is found in ultramafic rocks. The lateritic nickel model in the research area is vertically comprised of overburden, limonite zone, saprolite zone, saprock zone and bedrock. The limonite zone and the saprolite zone are included in the lateritic soil and have different nickel levels. Lateritic soil has resistivity contrast to bedrock, then resistivity data can be used to model lateritic nickel precipitate.The aquisition of resistivity data using Electrical Resistivity Tomography (ERT) Method. The ERT method is a method of measuring resistivity on the ground surface by using many electrodes, in order to obtain sub-lateral and vertical resistivity distribution variations, to obtain sub-surface imagery. The electrode configuration used in data acquisition is configuration of Dipole-Dipole. The lateritic nickel precipitate is obtained by inversion modeling based on the resistivity data. Inversion modeling is done by using Res2DInv software. Based on resistivity modeling results obtained lateritic resistivity values, as follows: limonite overburden resistivity < 40 Ohm.m, limonite resistivity: (40 – 200) Ohm.m,  saprolite resistivity : (201 – 444)  Ohm.m, saprock resistivity : (246 – 645) Ohm.m and  bedrock resistivity : (645 – 3300) Ohm.mKeywords: bedrock, configuration of  Dipole-Dipole, limonite, resistivity, saprolite
Interpretasi Geologi Bawah Permukaan dan Delineasi Cekungan Salawati Wilayah Sorong dan Sekitarnya Berdasarkan Analisis Spektral Serta Pemodelan 2D dan 3D Data Gayaberat Imam Setiadi, S.Si.,M.T.; Marjiyono Marjiyono
Jurnal Geologi dan Sumberdaya Mineral Vol. 19 No. 3 (2018): Jurnal Geologi dan Sumberdaya Mineral
Publisher : Pusat Survei Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33332/jgsm.geologi.v19i3.409

Abstract

The Salawati Basin is a matured sedimentary basin and   hydrocarbon has been produced since 1936. Several oil and gas fields have been produced in carbonate reefs and anticlinal structures. The purpose of this study  to determine basement configuration, structure patterns and  to delineate the Salawati Subbasin with   expecting to predict depocentre and the thickness of sedimentary rocks in this area. Gravity data analysis was done by using spectral analysis, high-low pass filter, 2D and 3D modeling. The result of spectral analysis shows that   the average thickness of sedimentary rocks  in this research area is 3.4 Km, and the amount of sedimentary subbasin that can be delineated are five subbasins.The most prospect area is around the Sele Strait as a basement high (possibly anticlinal) supplied from two depocentre from   the Sele Strait and Klasaman subbasin. The structure pattern that indicated from residual gravity anomaly shows basement high (anticline), transform fault and normal fault.  The 2D and 3D modeling results show that the  basement in the research areas are metamorphics  with density value 2.85 gr/cc, the layer above basement is pre-Tertiary sedimentary rock with density value 2.45 gr/cc, above the pre-Tertiary sediment is Paleogen sedimentary rock with density value 2.5 gr/cc, the top layer is Neogen sedimentary rock with density value 2.35 gr/cc. Based on the data and information, this area is   probable attractive for further investigation, especially regarding sedimentary subbasins that make oil and gas can be exploited economically.Keywords : Gravity, spectral analysis, 2D and 3D gravity modeling, Salawati Basin
Proses Diagenesis Batupasir Formasi Kanikeh, Seram Bagian Timur, Maluku, Indonesia Akhmad Khahlil Gibran; Aries Kusworo; Joko Wahyudiono; Eko Bayu Purwasatriya
Jurnal Geologi dan Sumberdaya Mineral Vol. 23 No. 2 (2022): Jurnal Geologi dan Sumberdaya Mineral
Publisher : Pusat Survei Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33332/jgsm.geologi.v23i2.412

Abstract

Batupasir Formasi Kanikeh yang berumur Carnian-Norian, tersebar dari Maluku hingga Maluku Tenggara. Formasi Kanikeh terendapkan pada lingkungan transisi dan karakter reservoir pada formasi ini masih belum banyak diungkap. Studi ini fokus terhadap pengaruh diagenesis terhadap karakteristik reservoir pada sikuen batupasir berumur Carnian-Norian di Daerah Seram Bagian Timur, Maluku. Metode yang digunakan adalah pengamatan petrografi dan Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS). Hasil pengamatan petrografi menunjukkan batupasir pada Seram Bagian Timur ini didominasi oleh lithic wacke, litharenite, dan arkose. Dari pengamatan SEM-EDS, mineral yang teramati termasuk dalam grup silika yang berasal dari kelompok mineral silika, feldspar, mineral lempung, dan mineral mika. Kelompok silika berupa butiran kuarsa. Kelompok feldspar yang teramati adalah K-feldspar yang berupa butiran. Kelompok mineral lempung paling dominan muncul di antaranya smektit, illit, kaolinit, halloisit. Kelompok mika yang teramati adalah muskovit. Diagenesis yang terjadi pada batupasir ini termasuk kompaksi; sementasi kalsit, kuarsa, mineral lempung, dan oksida besi; pelarutan; dan rekahan pada butiran karena tektonik. Butiran klastik yang tidak stabil, seperti feldspar mengalami alterasi menjadi mineral lempung. Berdasarkan karakteristik diagenesis tersebut, batupasir Formasi Kanikeh pada daerah ini memiliki karakter reservoir yang dapat diabaikan.Katakunci: Diagenesis, Kanikeh, reservoir, Seram.
Characteristics of Grain Size Distribution on Beaches Sediment of Sumba Island, Nusa Tenggara Timur Based on Grainsize and Geochemical Data Septriono Hari Nugroho; Purna Sulastya Putra
Jurnal Geologi dan Sumberdaya Mineral Vol. 20 No. 3 (2019): Jurnal Geologi dan Sumberdaya Mineral
Publisher : Pusat Survei Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33332/jgsm.geologi.v20i3.414

Abstract

Study of beaches sediment characteristics were conducted on three beaches on Sumba Island, East Nusa Tenggara.The research is a part of Widya Nusantara Expedition which conducted by using Research Vessel of Baruna Jaya VIII. The aim of this study is to determine the characteristics of coastal deposits through the observation of grain size by using the grain size trend analysis approach (Grain Size Trend Analysis, commonly abbreviated as GSTA) and geochemical analysis. A total of 36 samples were taken on each coast representing high tide, transition and low tide along the coast. A grain size analysis was performed using a Malvern Mastersizer 2000 that was processed with Gradistat 4.0 software. Geochemical analysis was carried out using X-ray fluorescence spectrometry (XRF). The distribution of beach sediments is dominated by moderate sand - coarse sand and differences on content of geochemical elements (Ca, Sr, Fe, K, and Ti). The coastal conditions that are connected to the Indian Ocean (B1) have different characteristics from the beach that connected to the Sumba strait (B5 and B7). GSTA analysis showed sediment of Laboya Beach finer than sediment on Waikelo and Melolo Beach. Geochemical elements on Laboya Beach indicates different values than others. It indicates there are differences in the provenance and composition of sediment on the all three beaches. The supply of coastal deposits on these three beaches is influenced by the mechanism of precipitation of the walls and the processes of waves and rivers.Keywords: distribution, sediment, grainsize, geochemical, XRF, beach sediment.
Geokimia Endapan Nikel Laterit di Tambang Utara, Kecamatan Pomalaa, Kabupaten Kolaka, Provinsi Sulawesi Tengara Riko Ardiansyah Indra Kusuma; Hashari Kamaruddin; Mega Fatimah Rosana; Euis Tintin Yuningsih
Jurnal Geologi dan Sumberdaya Mineral Vol. 20 No. 2 (2019): Jurnal Geologi dan Sumberdaya Mineral
Publisher : Pusat Survei Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33332/jgsm.geologi.v20i2.418

Abstract

Pomalaa is administratively located in Kolaka Regency, Southeast Sulawesi Province. The nickel mining business area in Pomalaa is managed by State-Owned Enterprises and Private Enterprises. Pomalaa is a sub-district that has natural resources in the form of nickel. Nickel Laterite deposits is a result weathering of ultramafic rock that is leaching process and accumulates in the supergen enrichment zone. The lateritization factor is controlled by lithology, morphology, and structure. In general, the profile of laterite nickel deposits in the North Mine area from top to bottom consists of top soil, limonite, saprolite, and bedrock zones. The laterite nickel precipitate in the North Mine shows varying thickness, based on color, texture, size and mineral composition. Laterite deposits from drilling results reaches an range of 25 - 30 meters. Soil and rocks sampling from each laterite zone every meter resulting from drilling are carried out by laboratory testing using XRF (X-Ray Fluorescence) analysis method with 283 total sample. High Ni element show enrichment in the saprolite zone, whereas in the high Fe (iron) element in the limonite zone.Keywords: nickel, laterite, geochemical, Pomalaa
Potensi Endapan Pasir Besi di Daerah Grabag dan Sekitarnya Berdasarkan Data Geomagnet G.M. Lucki Junursyah; Wanda Rahmat
Jurnal Geologi dan Sumberdaya Mineral Vol. 20 No. 2 (2019): Jurnal Geologi dan Sumberdaya Mineral
Publisher : Pusat Survei Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33332/jgsm.geologi.v20i2.422

Abstract

The potential of iron sand in Grabag area and its surrounding, Central Java Province, is not fully known yet because it is covered by thick alluvium, so that mining activities are done unmanaged without seeing the effect of environmental damage caused. This study uses reduction to the pole and upward continuation processing and analysis for Geomagnetic data in order to spread of lateral magnetic anomalies (map) and forward modelling for vertical magnetic anomalies (2D cross-sections). Based on the dispersion of magnetic anomaly, it is known that iron sand potential in the research area is located on old alluvium deposits with depth around 60 m and young coast alluvium sedimentation with depth around of 20 m, forming a lens as sand dump or river bank, followed by lane of ancient river flow pattern with thickness reaching ±10 m. The potential area is estimated to reach 26,329,188 m² with the calculation of hypothetical reserves reaching 69,575 Ton on the southwest and 5,880, 213 Ton in the northwest of the research area. The results of this study are expected to be used as reference for further research, so that it can menage iron sand mining activities more regularly and not caused environmental damaged.Keywords: Geomagnetic, Iron Sand, Alluvium. 
Pengaruh Gempabumi Tektonik Terhadap Aktivitas G. Gede Sri Hidayati; Cecep Sulaeman; Supartoyo Supartoyo; Estu Kriswati
Jurnal Geologi dan Sumberdaya Mineral Vol. 19 No. 4 (2018): Jurnal Geologi dan Sumberdaya Mineral
Publisher : Pusat Survei Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33332/jgsm.geologi.v19i4.423

Abstract

In addition to home for seven active volcanoes, West Java, is also having high tectonic activity, owing to its close distance from subduction zone and crustal fault. The Cimandiri Fault extends about 100 km from southwest to the northeast ward through Sukabumi area. Gede Volcano with high seismic activity is sitting 20 km north of Cimandiri Fault. Shallow earthquakes often occur around Gede volcano and their sources are fairly close to the Cimandiri valley. Feltearthquakes occurred in 2007, 2010, 2012 and 2014,where the source supposed to be around Cimandiri valley,were followed by volcano-tectonic (VT) earthquake swarms in Gede Volcano. These swarms probably indicate that there is a linkage between tectonic and Gede volcano activities. However, the swarms were followed by less significant changes in volcanic activity. GPS data during measurement period of 2006-2015 show the existence of a fault with main stress in the northwest-southeast direction. The mechanism of the Cimandiri Fault is reverse fault with sinistral slip component and sinistral strike slip fault, while the swarm of VT earthquakes in Gede Volcano is dominated by reverse and normal faults. Tectonic earthquakes may trigger nearby volcanic eruption; it depends on the state of magma of the volcano and the magnitude of the earthquake.Keyword: Tectonic, Cimandiri fault, VT earthquake, Gede Volcano.
Prediksi Model 2d Data Magnetotelurik Terbaik Berdasarkan Pendekatan Model Irisan Di Cekungan Tomori dan Sekitarnya Gusti Muhammad Lucki Junursyah; Dimas Bagus Maulana; Randi Rusdiana
Jurnal Geologi dan Sumberdaya Mineral Vol. 20 No. 4 (2019): Jurnal Geologi dan Sumberdaya Mineral
Publisher : Pusat Survei Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33332/jgsm.geologi.v20i4.424

Abstract

2D modeling of magnetotelluric data produce various models that are influenced by noise and differences in coordinate measurement systems with strike directions, so the results are inaccurate. A technique that can be done to identify the accuracy of the data is the rotation analysis based on the overlay model approach. The type of rotation used are strike angle and fix angle. The strike angle rotation is done by maximizing the anti-diagonal impedance value, while the rotation fix angle refers to the isotropic homogeneous earth model by eliminating the static effect on the surface. The overlay model approach is based on the assumption that the distribution of resistivity variations of the rock in the subsurface has same value in various models. 2D modeling used in this analysis consists of three trajectories of correlation results from 30 magnetotelluric measurement points in the Tomori and surrounding areas. The results of the analysis show that the strike angle rotation model is the best model that can be used in the study area with the approach of determination value reaches 0.7735, therefore it can reduce subsurface geological interpretation deviation based on various 2D models.Keywords: Magnetotelluric, impedance rotation, strike angle rotation, fix angle rotation
Karakteristik Fluida Hidrotermal Endapan Emas Orogenik di Pegunungan Rumbia, Kabupaten Bombana, Provinsi Sulawesi Tenggara Hasria Hasria; Arifudin Idrus; I Wayan Warmada
Jurnal Geologi dan Sumberdaya Mineral Vol. 20 No. 2 (2019): Jurnal Geologi dan Sumberdaya Mineral
Publisher : Pusat Survei Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33332/jgsm.geologi.v20i2.427

Abstract

Recently, gold exploration activities  are not only focused along volcanic-magmatic belt but also starting to shift along metamorphicand sedimentary terrains. The purpose of this study is to analyses the characteristics hydrothermal fluids gold deposits t in the Rumbia Mountains, Bombana Regency, Southeast Sulawesi. There are three generations of veins identified including the first is parallel to the foliations, the second crosscuts the first generation of veins/foliations, and the third is of laminated deformed quartz+calcite veins at the late stage. Temperature of homogenization (Th) and salinity at Rumbia Mountain of the first vein vary from 220 to 355.30oC and 6.74 to 10.11 wt. % NaCl eq., respectively. The second generation vein was originated at Th of 157 to 255.50oC and salinity of 3.39 to 6.88 wt.%NaCl eq., whereas the third generation vein formed at lowest Th varying from 104.40 to 265.90oC and less saline fluid at salinity range between 0.18 and 6.30 wt.% NaCl eq. The result of temperature formation value correlation to the depth of the formation of orogenic gold deposits in Rumbia Mountain is indicated to form on sub-greenschist to greenschist facies at depth of about 4-8 kilometers and formation temperature between 104.40 - 355.30oC at zone epizonal and mesozonal. Based on characteristics fluids inclusion discussed above, the primary metamorphic-hosted gold mineralization type at Rumbia Mountain tends to meet the criteria of orogenic gold type.  Keyword : fluid iclusion, quartz veins, Rumbia mountain, orogenic gold deposits.

Filter by Year

2006 2025


Filter By Issues
All Issue Vol. 26 No. 4 (2025) Vol. 26 No. 3 (2025): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 26 No. 2 (2025): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 26 No. 1 (2025): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 25 No. 4 (2024): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 25 No. 3 (2024): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 25 No. 2 (2024): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 25 No. 1 (2024): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 24 No. 4 (2023): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 24 No. 3 (2023): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 24 No. 2 (2023): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 24 No. 1 (2023): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 23 No. 4 (2022): Jurnal Geologi dan Sumberdaya Mineral Vol. 23 No. 3 (2022): Jurnal Geologi dan Sumberdaya Mineral Vol. 23 No. 2 (2022): Jurnal Geologi dan Sumberdaya Mineral Vol. 23 No. 1 (2022): Jurnal Geologi dan Sumberdaya Mineral Vol. 22 No. 4 (2021): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 22 No. 3 (2021): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 22 No. 2 (2021): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 22 No. 1 (2021): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 21 No. 4 (2020): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 21 No. 3 (2020): Jurnal Geologi dan Sumberdaya Mineral Vol. 21 No. 2 (2020): JURNAL GEOLOGI DAN SUMBERDAYA MINERAL Vol. 21 No. 1 (2020): Jurnal Geologi dan Sumberdaya Mineral Vol. 20 No. 4 (2019): Jurnal Geologi dan Sumberdaya Mineral Vol. 20 No. 3 (2019): Jurnal Geologi dan Sumberdaya Mineral Vol. 20 No. 2 (2019): Jurnal Geologi dan Sumberdaya Mineral Vol. 20 No. 1 (2019): Jurnal Geologi dan Sumberdaya Mineral Vol. 19 No. 4 (2018): Jurnal Geologi dan Sumberdaya Mineral Vol. 19 No. 3 (2018): Jurnal Geologi dan Sumberdaya Mineral Vol. 19 No. 2 (2018): Jurnal Geologi dan Sumberdaya Mineral Vol. 19 No. 1 (2018): Jurnal Geologi dan Sumberdaya Mineral Vol. 18 No. 4 (2017): Jurnal Geologi dan Sumberdaya Mineral Vol. 18 No. 3 (2017): Jurnal Geologi dan Sumberdaya Mineral Vol. 18 No. 2 (2017): Jurnal Geologi dan Sumberdaya Mineral Vol. 18 No. 1 (2017): Jurnal Geologi dan Sumberdaya Mineral Vol. 17 No. 4 (2016): Jurnal Geologi dan Sumberdaya Mineral Vol. 17 No. 3 (2016): Jurnal Geologi dan Sumberdaya Mineral Vol. 17 No. 2 (2016): Jurnal Geologi dan Sumberdaya Mineral Vol. 17 No. 1 (2016): Jurnal Geologi dan Sumberdaya Mineral Vol. 16 No. 4 (2015): Jurnal Geologi dan Sumberdaya Mineral Vol. 16 No. 3 (2015): Jurnal Geologi dan Sumberdaya Mineral Vol. 16 No. 2 (2015): Jurnal Geologi dan Sumberdaya Mineral Vol. 16 No. 1 (2015): Jurnal Geologi dan Sumberdaya Mineral Vol. 15 No. 4 (2014): Jurnal Geologi dan Sumberdaya Mineral Vol. 15 No. 3 (2014): Jurnal Geologi dan Sumberdaya Mineral Vol. 15 No. 2 (2014): Jurnal Geologi dan Sumberdaya Mineral Vol. 15 No. 1 (2014): Jurnal Geologi dan Sumberdaya Mineral Vol. 23 No. 3 (2013): Jurnal Sumber Daya Geologi Vol. 23 No. 2 (2013): Jurnal Sumber Daya Geologi Vol. 23 No. 1 (2013): Jurnal Sumber Daya Geologi Vol. 14 No. 4 (2013): Jurnal Geologi dan Sumberdaya Mineral Vol. 22 No. 4 (2012): Jurnal Sumber Daya Geologi Vol. 22 No. 3 (2012): Jurnal Sumber Daya Geologi Vol. 22 No. 2 (2012): Jurnal Sumber Daya Geologi Vol. 22 No. 1 (2012): Jurnal Sumber Daya Geologi Vol. 21 No. 5 (2011): Jurnal Sumber Daya Geologi Vol. 21 No. 4 (2011): Jurnal Sumber Daya Geologi Vol. 21 No. 3 (2011): Jurnal Sumber Daya Geologi Vol. 21 No. 2 (2011): Jurnal Sumber Daya Geologi Vol. 21 No. 1 (2011): Jurnal Sumber Daya Geologi Vol. 20 No. 6 (2010): Jurnal Sumber Daya Geologi Vol. 20 No. 5 (2010): Jurnal Sumber Daya Geologi Vol. 20 No. 4 (2010): Jurnal Sumber Daya Geologi Vol. 20 No. 3 (2010): Jurnal Sumber Daya Geologi Vol. 20 No. 2 (2010): Jurnal Sumber Daya Geologi Vol. 20 No. 1 (2010): Jurnal Sumber Daya Geologi Vol. 19 No. 6 (2009): Jurnal Sumber Daya Geologi Vol. 19 No. 5 (2009): Jurnal Sumber Daya Geologi Vol. 19 No. 4 (2009): Jurnal Sumber Daya Geologi Vol. 19 No. 3 (2009): Jurnal Sumber Daya Geologi Vol. 19 No. 2 (2009): Jurnal Sumber Daya Geologi Vol. 19 No. 1 (2009): Jurnal Sumber Daya Geologi Vol. 18 No. 6 (2008): Jurnal Sumber Daya Geologi Vol. 18 No. 5 (2008): Jurnal Sumber Daya Geologi Vol. 18 No. 4 (2008): Jurnal Sumber Daya Geologi Vol. 18 No. 3 (2008): Jurnal Sumber Daya Geologi Vol. 18 No. 2 (2008): Jurnal Sumber Daya Geologi Vol. 18 No. 1 (2008): Jurnal Sumber Daya Geologi Vol. 17 No. 6 (2007): Jurnal Sumber Daya Geologi Vol. 17 No. 5 (2007): Jurnal Sumber Daya Geologi Vol. 17 No. 4 (2007): Jurnal Sumber Daya Geologi Vol. 17 No. 3 (2007): Jurnal Sumber Daya Geologi Vol. 17 No. 2 (2007): Jurnal Sumber Daya Geologi Vol. 17 No. 1 (2007): Jurnal Sumber Daya Geologi Vol. 16 No. 6 (2006): Jurnal Sumber Daya Geologi Vol. 16 No. 5 (2006): Jurnal Sumber Daya Geologi Vol. 16 No. 4 (2006): Jurnal Sumber Daya Geologi Vol. 16 No. 3 (2006): Jurnal Sumber Daya Geologi Vol. 16 No. 2 (2006): Jurnal Sumber Daya Geologi Vol. 16 No. 1 (2006): Jurnal Sumber Daya Geologi More Issue