cover
Contact Name
Dermiyati
Contact Email
dermiyati.1963@fp.unila.ac.id
Phone
+62721781822
Journal Mail Official
j.tnhtrop@gmail.com
Editorial Address
Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No. 1, Bandarlampung 35145, Indonesia
Location
Kota bandar lampung,
Lampung
INDONESIA
Journal of Tropical Soils
Published by Universitas Lampung
ISSN : 0852257X     EISSN : 20866682     DOI : http://dx.doi.org/10.5400/jts.v25i1
Core Subject : Agriculture, Social,
Journal of Tropical Soils (JTS) publishes all aspects in the original research of soil science (soil physic and soil conservation, soil mineralogy, soil chemistry and soil fertility, soil biology and soil biochemical, soil genesis and classification, land survey and land evaluation, land development and management environmental), and related subjects in which using soil from tropical areas.
Articles 812 Documents
Sediment Enrichment Ratio and Nutrient Leached by Runoff and Soil Erosion on Cacao Plantation Haridjaja, Oteng
JOURNAL OF TROPICAL SOILS Vol. 17 No. 1: Januari 2012
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2012.v17i1.67-74

Abstract

Soil consevation management system is an activity for diminishing sediment enrichment ratio and nutrient leacheds by water run off and soil erosion processes. The research was aimed to study sediment enrichment ratio and nutrient leached by run off and soil erosion on cacao plantations. Arachis pintoi with strips parallel contour and multiple strip cropping of upland rice or soybean (Glycine max) were planted to improve soil physical characterictic on cacao plantation as a main plant. The expriment were conducted with treatments as 10-15% and 40-45% slopes, 5-7 months and 25-27 months cacao ages (as main plants). As sub plots are T1 as a monoculture which to be cleaning under the plant canopy, T2 as a multiple strip cropping of upland rice or soybean, T3 as a combination of T2 and A. Pintoi strip. The results showed that  total N, P2O5, and K2O and organic-C contents in water run off and soil sediments indicated that T3 >T2 >T1 treatment, with the contents of each nutrient: T3 (total N 0.18%; 24.87 mg 100 g-1 P2O5: K2O 15.16 mg 100 g-1), T1 (total N 0.16%, 22.39 mg 100g-1 P2O5, K2O 11.50 mg 100g-1).  The total N, P2O5, K2O and organic-C soil contents < accumulation nutrient contents of total water run off and soil sediment transport. All of treathments have sediment enrichment ratios > 1.
Carbon Storage and Carbon Dioxide Emission as Influenced by Long-term Conservation Tillage and Nitrogen Fertilization in Corn-Soybean Rotation Utomo, Muhajir; Buchari, Henrie; Banuwa, Irwan Sukri; Fernando, Lanang Koko; Saleh, Rahmat
JOURNAL OF TROPICAL SOILS Vol. 17 No. 1: Januari 2012
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2012.v17i1.75-84

Abstract

Although agriculture is a victim of environmental risk due to global warming, but ironically it also contributes to global greenhouse gas (GHG) emission. The objective of this experiment was to determine the influence of long-term conservation tillage and N fertilization on soil carbon storage and CO2 emission in corn-soybean rotation system. A factorial experiment was arranged in a randomized completely block design with four replications. The first factor was tillage systems namely intensive tillage (IT), minimum tillage (MT) and no-tillage (NT). While the second factor was N fertilization with rate of 0, 100 and 200 kg N ha-1 applied for corn, and 0, 25, and 50 kg N ha-1 for soybean production. Samples of soil organic carbon (SOC) after 23 year of cropping were taken at depths of 0-5 cm, 5-10 cm and 10-20 cm, while CO2 emission measurements were taken in corn season (2009) and soybean season (2010). Analysis of variance and means test (HSD 0.05) were analyzed using the Statistical Analysis System package. At 0-5 cm depth, SOC under NT combined with 200 kg N ha-1 fertilization was 46.1% higher than that of NT with no N fertilization, while at depth of 5-10 cm SOC under MT was 26.2% higher than NT and 13.9% higher than IT.  Throughout the corn and soybean seasons, CO2-C emissions from IT were higher than those of MT and NT, while CO2-C emissions from 200 kg N ha-1 rate were higher than those of 0 kg N ha-1 and 100 kg N ha-1 rates.  With any N rate treatments, MT and NT could reduce CO2-C emission to 65.2 %-67.6% and to 75.4%-87.6% as much of IT, respectively. While in soybean season, MT and NT could reduce CO2-C emission to 17.6%-46.7% and 42.0%-74.3% as much of IT, respectively.  Prior to generative soybean growth,   N fertilization with rate of 50 kg N ha-1 could reduce CO2-C emission to 32.2%-37.2% as much of 0 and 25 kg N ha-1 rates.
Relationship between Concentration and Discharge on Storm Events: Case Study at Cakardipa Catchment, Cisukabirus Subwatershed, Upper Ciliwung Watershed, Bogor, West Java Heryani, Nani; Pawitan, Hidayat; Jarwadi Purwanto, Mohamad Yanuar; Subagyono, Kasdi
JOURNAL OF TROPICAL SOILS Vol. 17 No. 1: Januari 2012
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2012.v17i1.85-95

Abstract

River nutrient loadings rates are frequently determined from discharge and hydrochemistry relationships using regression techniques. Unfortunately such methods as a conventional technique are inadequate for dealing with the problem such as differences in shape and direction of loop forming in individual and seasonal storms. Besides the relationships are nonlinear and time-dependent, they also varies from site to site. There is a currently method to study hysteresis between discharge and concentration of hydrochemistry. The relationship between discharge and solute concentration was investigated at Cakardipa catchment, Upper Ciliwung watershed, between the years of 2009-2010. The characteristics of the hysteresis loops were used to evaluate the temporal variation of the relative contribution to stream flow of source waters at Cakardipa Catchment including groundwater (CG), soil water (CSO), and rain water (CR). Chemical water analysis was carried out on 497 water samples on storm event. The chemical analysis of storm event of Februari 14, 2010 was carried out for the concentrations of K+, Ca2+, Mg2+, Na+, SiO2, SO42-NO3-, Cl-, and HCO3-. Results of the experiment showed that concentrations displayed circular hysteresis loops during the events, highlighting the complex relation among solutes and discharge during storm hydrographs. The solutes of K, Na, and Ca produced  concave curvature, anti-clockwise hysteresis loops, and positive  trend, so that classified as A2 loops with components ranking were CR> CG> CSO. .The solutes of Mg, SO4, NO3 assumed to come from groundwater produced convex curvature, clockwise hysteresis loops, and positive trend, indicating a concentration component ranking of CG > CR > CSO (C2 model). While Si and Cl produced clockwise hysteresis loops, indicating a concentration component ranking of CG> CSO> CR  which was C1 model.
Adaptation of New Rice High Yielding Varieties on New Constructed Irrigated Rice Field Affected by Sea Water Intrusion in West Tanjung Jabung District, Jambi Saidi, Busyra Buyung; Hendri, Jon; Suharyon, Suharyon; Purnama, Hendri
JOURNAL OF TROPICAL SOILS Vol. 25 No. 3: September 2020
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2020.v25i3.119-126

Abstract

Assessment adaptation of several new superior rice varieties  on new rice fields affected by seawater intrusion was carried out in Tungkal Ilir Subdistrict, West Tanjung Jabung District, from April to October 2018. The study applied randomized block designs (RBD) with four replications. The treatments consisted of four new rice high yielding varities suitable for tidal/swamps areas namely Inpara 3, Inpara 8, Inpara 9, and Inpari 34 Salin Agritan, and one local rice variety (Londo) as control. Three stems seedlings per clump were planted at the age of 21-25 days, using a 4:1 Legowo planting system. Fertilizer application consisted of basic fertilizer (1.0 Mg ha-1 of lime, 2.5 Mg ha-1 of manure, and 75 kg ha-1 of urea) and supplementary fertilizer (SP-36 150 kg ha-1 and KCl 125 kg ha-1),. Urea supplementation is given based on observations with a leaf color chart (LCC). The results of the study showed that the four new rice HYVs were more adapted as compared to the local rice variety. The performance of the tested new rice HYVs showed quite a good growth appearance and productivity. The highest production was obtained in Inpari 34 Salin Agritan variety 2.85 Mg ha-1, while Inpara 3, Inpara 8, and Inpara 9 ranged between 2.0 and 2.1 Mg ha-1, while the local variety’s productivity was 1.9 Mg ha-1.
Influence of Induced Soil Compaction on the Growth, the Yield and the Soil Loss Resulting from the Groundnut Harvesting Ewetola, Esther Abosede
JOURNAL OF TROPICAL SOILS Vol. 25 No. 3: September 2020
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2020.v25i3.147-156

Abstract

The research was conducted to study  the growth and the yield of the groundnut plant and to  quantify the soil loss after groundnut harvesting as influenced by induced soil compaction. A ten kilogram of soil was packed in the pots with an initial bulk density of 1.05 Mg m-3, then it were compressed to1.57, 1.72, 1.88, 2.04, and 2.42 Mg m-3. The research was conducted in a completely randomized design with three replications. Groundnut seeds were sown in pots and the plant growth data were collected in a 2-week interval while force and energy of harvesting and soil loss due to groundnut harvesting were determined at 12 weeks after sowing. Data were analyzed using ANOVA and Fishers LSD at P= 0.05. Soil compacted to1.88 Mgm-3 produced more taller plant, more higher number of leaves and branches than control. Soil compaction significantly reduced the number of pods, roots, and fresh root weight compared to control. Bulk density (2.04 Mgm-3) required a significantly higher force (42.47 N) and energy (45.73 J) in harvesting than control and other compaction levels. Soil loss due to the  groundnut harvesting increased (13- 42%) in all compaction levels although statistically not different. Soil compaction beyond 1.88 Mg m-3 could affect the growth and the yield of groundnut and could increase the soil loss at harvesting.
Water Retention and Saturation Degree of Peat Soil in Sebangau Catchment Area, Central Kalimantan Sajarwan, Akhmat; Jaya, Adi; Banuwa, Irwan Sukri
JOURNAL OF TROPICAL SOILS Vol. 26 No. 1: January 2021
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2021.v26i1.29-42

Abstract

Water is an essential factor in forming, utilization, management, and sustainability of peat soil. This study was to obtain characteristics of water retention and porosity of peat soil. Peat samples were taken from the Natural Laboratory of Peat Forest, Central Kalimantan at shallow, medium, and deep peat at 0-50cm (surface) and 50-100 cm (subsurface), while laboratory analyses carried out at Soil Laboratory, Universitas Gajahmada. The result shows that volumetric moisture content at the surface lower than subsurface, except for deep peat. The total pore for the surface was 84.67-86.98%, while subsurface layers were 83.53-86.93%. For surface layer, saturated degree (S) medium peat higher than shallow and deep peat, while for shallow subsurface peat higher than medium and deep peat. S value all pF levels of surface for medium and deep peat higher than the subsurface. Bulk density for surface was 0.094g.cm-3 (rb(wet)) and 0.22g.cm-3(rb (dry)) for shallow peat while medium peat are 0.084–0.087g.cm-3(rb(wet)) and 0.18–0.20g.cm-3(rb(dry)), deep peat 0.064–0.090g.cm-3(rb(wet)) and 0.11–0.16g.cm-3(rb(dry)). For subsurface, bulk density of medium peat are 0.094–0.107g.cm-3 (rb(wet)) and 0.16–0.20g.cm-3 (rb(dry)), deep peat are 0.067–0.090g.cm-3 (rb(wet)) and 0.10–0.17g.cm-3 (rb(wet)). The particle density of surface and subsurface for shallow peat higher than medium and deep peat, with values 0.67-0.77g.cm3, 0.61-0.66g.cm3, and 0.53-0.63g.cm3 for shallow, medium, and deep peat, respectively. Total pores for the surface layer decrease with increasing dry bulk density (R = 0.624) and particle density (R = 0.375). This fact seems to confirm a directly proportional relationship between parameters bulk and particle density with total pores.
The Phytoextraction of Copper from Tropical Soil 21 Years after Amendment with Heavy-Metal Containing Waste Silva, Gianluigi; Aini, Septi Nurul; Buchari, Henrie; Salam, Abdul Kadir
JOURNAL OF TROPICAL SOILS Vol. 26 No. 1: January 2021
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2021.v26i1.11-18

Abstract

Several particular plants are suggested to extract significant parts of heavy metals from soils and accumulate them in their roots and shoots.  This research aimed to study the phytoextraction of Cu by several plants from heavy-metal contaminated tropical soils.  Soil samples collected from plots treated in 1998 with 0, 15 and 60 Mg industrial waste ha-1 were planted with three different plants, i.e., caisim, water spinach, and lettuce.   Plant parts (roots and shoots) and soil samples were harvested after a four-week growth period and analyzed for plant and soil Cu.  The results show that the growth of plants was depressed by the increase in the soil Cu (extracted by 1 N HNO3) as affected by waste levels, with water spinach being the most progressive and produced the most significant biomass.  The absorption of Cu by caisim and water spinach increased with the soil extracted Cu (linear R2 = 0.71* for caisim and 0.32* for water spinach) and accumulated greater in plant roots than that in shoots. The translocation factor (TF << 1.00) indicates that all plants were good Cu phytostabilizators rather than phytoextractors, with water spinach being the best Cu extractor.
Soil Quality Engineering Using Vermicompost and its Effect on the Corn (Zea mays L.) Production in Coastal Area Riwandi, Riwandi; Hasanudin, Hasanudin; Gusmara, Herry; Anandyawati, Anandyawati
JOURNAL OF TROPICAL SOILS Vol. 25 No. 3: September 2020
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2020.v25i3.127-135

Abstract

The low quality of Entisol is caused by low availability of nitrogen, phosphorus, and potassium as well as low soil pH, so the addition of vermicompost is necessary. The purpose of this study was to determine the effect of vermicompost application on soil quality and to obtain the highest vermicompost dosage on the availability of nutrients such as N, P, K, and the yield of corn. The field experiment used a Randomized Completely Block Design (RCBD) with 7 dosages of vermicompost and three replications. The treatments were V0 = 0; V1 = 5; V2 = 10; V3 = 15; V4 = 20; V5 = 25; V6 = 30 Mg ha-1. Variables observed consisted of 1) initial soil and vermicompost characterization analysis, 2) soil analysis and N, P, and K content in leaves, and yield of corn. The results showed that Entisol was classified as low quality; however, vermicompost quality complied with the requirements of quality organic fertilizer. The experiment also indicated that the highest pH of Entisol (5.31) and K content in corn leaves (2.12%) were obtained at a dose of vermicompost 25 Mg ha-1. Meanwhile, the highest weight of husked corn cobs (415.55 g plant-1) and weight of unhusked corn cob (351.11 g plant-1) were obtained at a vermicompost dose of 15 Mg ha-1.
Study on Nutrient Balances of Newly Developed Lowland Rice Fields at Kleseleon Village, Malaka District, Nusa Tenggara Timur -, Sukristiyonubowo -; Riyanto, Damasus
JOURNAL OF TROPICAL SOILS Vol. 25 No. 3: September 2020
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2020.v25i3.137-145

Abstract

The land allocated for newly opened lowland rice can be from ultisols, oxisols, inceptisols, and potential acid sulfate soils. The study was aimed to evaluate nitrogen (N), phosphorous (P), and potassium (K) inputs – outputs of newly developed lowland rice under different treatments and to validate the N, P, and K recommended applications rate according to N, P, and K balances. The study was conducted in Kleseleon village, Malaka District. Five treatments were tested namely T0: farmers practices, T1: NPK at recommendation rate + Rice straw compost, T2: NPK at recommendation rate + Smart + Rice straw compost, T3: ¾ NPK at recommendation rate + Smart + Rice straw compost, and T4: NPK at recommendation rate + Smart + Rice straw compost. The treatments were arranged in a randomized complete block design with three replications. The nutrient balances were constructed according to the difference between nutrient inputs and losses. The results indicated that there were surplus N, P, and K across the treatments and more than adequate to replace N, P, and K removed by harvest products. The suggested N, P, and K application rates were 100 kg urea, 100 kg SP-36, and 100 kg KCl with the addition of compost 3 Mg ha-1 season-1.
Vermicompost Buffering Capacity to Reduce Acidification of Pb and Cd Contaminated Inceptisols and Entisols Muktamar, Zainal; Hermawan, Bandi; Wulandari, Wulandari; Prawito, Priyono; Sudjatmiko, Sigit; Setyowati, Nanik; Fahrurrozi, Fahrurrozi; Chozin, Mochammad
JOURNAL OF TROPICAL SOILS Vol. 26 No. 1: January 2021
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2021.v26i1.1-9

Abstract

Contamination of  heavy metals on the soil leads to an increase in its acidity. Vermicompost application is commonly used to improve the properties of soil. The study was carried out to determine the reduction of the acidity in Pb and Cd contaminated soils under the application of vermicompost. Two laboratory experiments were set using Completely Randomized Design (CRD) with two factors. The first factor was soil samples, vis Inceptisols, and Entisols, and the second factor was the rates of vermicompost, consisted of 0, 5, 10, 15 g kg-1. The treatment combination was repeated three times. The soils were pretreated with 10 mg kg-1 Pb or Cd using Pb(NO3)2 and Cd(NO3)2. Three hundred kg soil sample was incorporated with vermicompost and placed in a 500 ml plastic bottle. The mixtures were incubated for eight weeks, and the moisture of the soil was maintained at field capacity. The acidity and soil temperature were monitored every week. The study indicated that Pb contaminated soil acidity increased to the sixth week of the incubation and decreased afterward. However, the acidity of Cd contaminated soil was consistently increased during the incubation. Treatment of vermicompost significantly lowered the acidity of both Pb and Cd contaminated soils. Contaminated Entisols had a higher response to the application of vermicompost than that of Inceptisols. This finding is significant in assessing acidity risk and possible management intervention for Pb and Cd contaminated soils.

Filter by Year

2008 2025


Filter By Issues
All Issue Vol 30, No 3: September 2025 (in Progress) Vol. 30 No. 3: September 2025 (in Progress) Vol. 30 No. 2: May 2025 Vol 30, No 2: May 2025 Vol 30, No 1: January 2025 Vol. 30 No. 1: January 2025 Vol 29, No 3: September 2024 Vol. 29 No. 3: September 2024 Vol. 29 No. 2: May 2024 Vol 29, No 2: May 2024 Vol 29, No 1: January 2024 Vol. 29 No. 1: January 2024 Vol. 28 No. 3: September 2023 Vol 28, No 3: September 2023 Vol 28, No 2: May 2023 Vol. 28 No. 2: May 2023 Vol. 28 No. 1: January 2023 Vol 28, No 1: January 2023 Vol. 27 No. 3: September 2022 Vol 27, No 3: September 2022 Vol 27, No 2: May 2022 Vol. 27 No. 2: May 2022 Vol. 27 No. 1: January 2022 Vol 27, No 1: January 2022 Vol 26, No 3: September 2021 Vol. 26 No. 3: September 2021 Vol 26, No 2: May 2021 Vol. 26 No. 2: May 2021 Vol. 26 No. 1: January 2021 Vol 26, No 1: January 2021 Vol. 25 No. 3: September 2020 Vol 25, No 3: September 2020 Vol. 25 No. 2: May 2020 Vol 25, No 2: May 2020 Vol 25, No 1: January 2020 Vol. 25 No. 1: January 2020 Vol 24, No 3: September 2019 Vol. 24 No. 3: September 2019 Vol 24, No 2: May 2019 Vol. 24 No. 2: May 2019 Vol 24, No 1: January 2019 Vol. 24 No. 1: January 2019 Vol 23, No 3: September 2018 Vol. 23 No. 3: September 2018 Vol 23, No 2: May 2018 Vol. 23 No. 2: May 2018 Vol 23, No 1: January 2018 Vol. 23 No. 1: January 2018 Vol. 22 No. 3: September 2017 Vol 22, No 3: September 2017 Vol. 22 No. 2: May 2017 Vol 22, No 2: May 2017 Vol. 22 No. 1: January 2017 Vol 22, No 1: January 2017 Vol. 21 No. 3: September 2016 Vol 21, No 3: September 2016 Vol. 21 No. 2: May 2016 Vol 21, No 2: May 2016 Vol 21, No 1: January 2016 Vol. 21 No. 1: January 2016 Vol 20, No 3: September 2015 Vol. 20 No. 3: September 2015 Vol 20, No 2: May 2015 Vol. 20 No. 2: May 2015 Vol 20, No 1: January 2015 Vol. 20 No. 1: January 2015 Vol. 19 No. 3: September 2014 Vol 19, No 3: September 2014 Vol 19, No 2: May 2014 Vol. 19 No. 2: May 2014 Vol. 19 No. 1: January 2014 Vol 19, No 1: January 2014 Vol 18, No 3: September 2013 Vol. 18 No. 3: September 2013 Vol 18, No 2: May 2013 Vol. 18 No. 2: May 2013 Vol. 18 No. 1: January 2013 Vol 18, No 1: January 2013 Vol. 17 No. 3: September 2012 Vol 17, No 3: September 2012 Vol 17, No 2: May 2012 Vol. 17 No. 2: May 2012 Vol. 17 No. 1: Januari 2012 Vol 17, No 1: Januari 2012 Vol. 16 No. 3: September 2011 Vol 16, No 3: September 2011 Vol. 16 No. 2: May 2011 Vol 16, No 2: May 2011 Vol 16, No 1: January 2011 Vol. 16 No. 1: January 2011 Vol. 15 No. 3: September 2010 Vol 15, No 3: September 2010 Vol. 15 No. 2: May 2010 Vol 15, No 2: May 2010 Vol 15, No 1: January 2010 Vol. 15 No. 1: January 2010 Vol 14, No 3: September 2009 Vol. 14 No. 3: September 2009 Vol 14, No 2: May 2009 Vol. 14 No. 2: May 2009 Vol 14, No 1: January 2009 Vol. 14 No. 1: January 2009 Vol. 13 No. 3: September 2008 Vol 13, No 3: September 2008 Vol 13, No 2: May 2008 Vol. 13 No. 2: May 2008 Vol. 13 No. 1: January 2008 Vol 13, No 1: January 2008 More Issue