cover
Contact Name
Hanny Haryanto
Contact Email
hanny.haryanto@dsn.dinus.ac.id
Phone
-
Journal Mail Official
hanny.haryanto@dsn.dinus.ac.id
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Techno.Com: Jurnal Teknologi Informasi
ISSN : 14122693     EISSN : 23562579     DOI : -
Topik dari jurnal Techno.Com adalah sebagai berikut (namun tidak terbatas pada topik berikut) : Digital Signal Processing, Human Computer Interaction, IT Governance, Networking Technology, Optical Communication Technology, New Media Technology, Information Search Engine, Multimedia, Computer Vision, Information Retrieval, Intelligent System, Distributed Computing System, Mobile Processing, Computer Network Security, Natural Language Processing, Business Process, Cognitive Systems, Software Engineering, Programming Methodology and Paradigm, Data Engineering, Information Management, Knowledge Based Management System, Game Technolog
Arjuna Subject : -
Articles 23 Documents
Search results for , issue "Vol. 24 No. 1 (2025): Februari 2025" : 23 Documents clear
Optimasi Prediksi Prediabetes dengan Metode Fitur Selection dan Imbalance Learning Arifin, Samsul; Tahyudin, Imam
Techno.Com Vol. 24 No. 1 (2025): Februari 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i1.11730

Abstract

Diabetes adalah salah satu tantangan kesehatan global yang terus meningkat, dengan deteksi dini pradiabetes menjadi kunci untuk pencegahan. Data yang digunakan diambil dari Diabetes Health Indicators Dataset dan dipersiapkan melalui tahap feature engineering, analisis korelasi, dan penanganan missing value. Selanjutnya, model dibangun menggunakan tiga algoritma utama, yaitu Random Forest, XGBoost, dan Logistic Regression. Penelitian ini menggabungkan analisis korelasi variabel dan metode imbalance learning untuk mengoptimalkan prediksi pradiabetes menggunakan algoritma machine learning. Untuk menangani ketidakseimbangan data, teknik SMOTE diterapkan guna menghasilkan data sintetik pada kelas minoritas. Hasil penelitian menunjukkan model Random Forest memberikan kinerja terbaik dengan akurasi 97,57%, mengungguli XGBoost dan Logistic Regression. Penerapan analisis korelasi variabel dan imbalance learning terbukti efektif dalam meningkatkan kinerja prediksi dengan identifikasi fitur penting. Penelitian ini menunjukkan bahwa pendekatan yang diterapkan dapat membantu deteksi dini pradiabetes secara lebih akurat dan tepat.   Kata kunci: Diabetes, Deteksi Prediabetes, Machine Learning, Random Forest
Optimasi Support Vector Machine Dengan PSO Untuk Klasifikasi Kelayakan Export Kerang Batik Putro, Bagus Prindo Sugihartono; Soeleman, M Arief; Pujiono, Pujiono
Techno.Com Vol. 24 No. 1 (2025): Februari 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i1.11793

Abstract

Kerang Batik (Paphia undulata) memiliki pola cangkang yang mirip batik, dengan warna dasar cangkang yang bervariasi dari kuning cerah hingga gelap. Sebagai komoditas ekspor Indonesia yang permintaannya terus meningkat, penting untuk menjaga standar kualitas tinggi agar kerang siap ekspor. Penelitian ini menyelidiki metode kontrol kualitas yang efektif untuk kerang batik yang layak ekspor dengan mengambil sampel dari perusahaan terkait. Setelah proses pra-pemrosesan citra, dilakukan ekstraksi fitur, termasuk fitur bentuk (eccentricity, metric) dan fitur tekstur (GLCM). Fitur-fitur ini digunakan dalam algoritma SVM (Support Vector Machine) dengan kernel RBF, yang dipilih karena kemampuannya menangani data non-linear, untuk mencapai akurasi optimal. Metode optimasi PSO (Particle Swarm Optimization) juga diterapkan untuk meningkatkan akurasi lebih lanjut. Penelitian menunjukkan bahwa SVM dengan kernel RBF mencapai akurasi tertinggi sebesar 96,43% pada sudut 45° dan 90°. Setelah dioptimalkan dengan PSO, akurasi meningkat menjadi 97,86% pada sudut 90°. Dengan demikian, penerapan PSO pada algoritma SVM secara signifikan meningkatkan akurasi klasifikasi.   Kata kunci: SVM, PSO, Kerang Batik, Kernel RBF, GLCM
Peningkatan Kinerja K-Means Clustering pada Data Penggunaan ChatGPT oleh UMKM Supriyati, Endang; Listyorini, Tri; Iqbal, Mohammad
Techno.Com Vol. 24 No. 1 (2025): Februari 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i1.11838

Abstract

Di era digital saat ini, Usaha Mikro, Kecil Dan Menengah (UMKM) semakin banyak menggunakan teknologi chatbot seperti ChatGPT untuk berinteraksi dengan pelanggan. Namun, mengekstraksi wawasan yang bermakna dari sejumlah besar data yang dihasilkan oleh interaksi ini masih merupakan sebuah tantangan.  Penelitian ini mengusulkan pendekatan untuk meningkatkan analisis data penggunaan ChatGPT oleh UMKM menggunakan kombinasi K-Means clustering dan Independent Component Analysis ( (ICA) untuk pengurangan dimensi.  Pendekatan ini bertujuan untuk menemukan pola dan cluster tersembunyi dalam data dengan mereduksi ruang fitur menggunakan ICA dan kemudian menggunakan K-Means clustering.  Selain itu, penelitian ini mempertimbangkan kombinasi metode Elbow untuk mengoptimalkan pemilihan jumlah cluster yang optimal. Melalui eksperimen dan evaluasi, ditunjukkan efektivitas metode yang diusulkan, sehingga memberikan UMKM alat yang ampuh untuk mendapatkan wawasan berharga dari data penggunaan ChatGPT. Penelitian ini menggunakan data dari 50 UMKM di Kabupaten Kudus . Hasil evaluasi kinerja K-means menunjukkan untuk data yang relatif kecil, penggunaan ICA kurang mempengaruhi kinerja K-Means. Skenario uji coba data dengan ICA menunjukkan skor silhouette yang lebih rendah, yaitu 0.19 dan 0.18 untuk masing-masing data pelatihan dan pengujian, sedangkan skenario uji coba data tanpa ICA menunjukkan skor silhouette yang lebih tinggi, yaitu 0.30 dan 0.23.   Kata kunci: K-Means clustering, metode Elbow, ICA, ChatGPT, UMKM
Analisis Performa Deep Embedded Clustering untuk Pendeteksian Topik Cahyadi, Danu Julian; Murfi, Hendri; Satria, Yudi; Abdullah, Sarini; Widyaningsih, Yekti
Techno.Com Vol. 24 No. 1 (2025): Februari 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i1.11841

Abstract

Pendeteksian topik adalah solusi untuk mengungkap struktur laten dalam sebuah dokumen. Kerangka umum pendeteksian topik berbasis clustering terdiri dari dua langkah: pembelajaran representasi dan pendeteksian topik melalui clustering. Dalam penelitian ini, Bidirectional Encoder Representations from Transformers (BERT) digunakan untuk pembelajaran representasi karena BERT mampu menangkap konteks setiap kata berdasarkan kata-kata di sekitarnya. Representasi teks yang diperoleh dari BERT digunakan untuk pendeteksian topik dengan clustering. Deep Embedded Clustering (DEC) dan Improved DEC (IDEC) adalah model clustering berbasis deep learning yang digunakan dalam penelitian ini untuk pendeteksian topik. DEC dan IDEC mampu mengubah data ke dalam ruang dimensi yang lebih rendah serta mengoptimalkan cluster secara simultan. Output dari teknik clustering berupa kata-kata kunci yang menggambarkan setiap topik cluster. Setelah mendapat kata kunci yang mewakili topik, evaluasi model dilakukan dengan melakukan perbandingan nilai topic coherence menggunakan Topic Coherence - Word2Vec (TC-W2V) sebagai analisis kuantitatif. Penelitian ini merupakan perluasan dari penerapan DEC dan IDEC pada pendeteksian topik dengan menambahkan analisis visualisasi dan kata kunci. Simulasi menunjukkan bahwa DEC dan IDEC mengungguli Uniform Manifold  Approximation and Projection (UMAP)-based k-means (UKM) dan Eigenspace-Based Fuzzy C-Means (EFCM) dari segi nilai TC-W2V, hasil visualisasi, dan kata kunci.   Kata kunci: analisis teks, deep clustering, pemrosesan teks
Integrasi Virtual Reality dan Sistem Treadmill untuk Meningkatkan Pengalaman Wisatawan: Studi Kasus Destinasi Wisata Balekemambang Rozak, Rofiq 'Abdul; Tahyudin, Imam; Tikaningsih, Ades; Saefullah, Ufu; Prasetya, Subani Charis; Alam, Yusuf Nur
Techno.Com Vol. 24 No. 1 (2025): Februari 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i1.11886

Abstract

Sektor pariwisata memegang peranan penting dalam pertumbuhan ekonomi negara-negara berkembang seperti Indonesia. Namun, metode promosi tradisional mungkin tidak lagi memadai untuk menarik pengunjung di era digital. Penelitian ini menyelidiki penerapan teknologi Virtual Reality (VR) yang terintegrasi dengan sistem treadmill untuk mempromosikan Balekemambang, destinasi wisata di Purwokerto, Jawa Tengah. Dengan menggabungkan sistem berbasis Raspberry Pi dan video 360 derajat Balekemambang, pengalaman VR memungkinkan pengguna menjelajahi situs secara virtual sambil berjalan di atas treadmill, mensimulasikan kunjungan di dunia nyata. Penelitian ini mengevaluasi efektivitas sistem ini dalam meningkatkan pengalaman imersif dan pengaruhnya terhadap minat wisatawan. Peserta diminta untuk mencoba sistem VR dan kemudian mengisi kuesioner untuk mengukur berbagai faktor, termasuk keterlibatan emosional, minat terhadap destinasi, dan kemungkinan berkunjung. Model regresi logistik mengungkapkan hasil yang signifikan, dengan tingkat akurasi 100%, seperti yang ditunjukkan oleh matriks kebingungan. Temuan ini menunjukkan bahwa pengalaman VR yang imersif dapat memengaruhi minat wisatawan secara signifikan, menjadikan VR sebagai alat yang ampuh untuk mempromosikan pariwisata.   Kata kunci: Realitas Virtual, Integrasi Treadmill, Regresi Logistik, Balekemambang
Sistem Personalisasi Pasien Diabetes Berbasis Domain Fitur Menggunakan Algoritma Gradient Boosting Machine Praningki, Tutus; Kurniawan, David Thanlian
Techno.Com Vol. 24 No. 1 (2025): Februari 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i1.11928

Abstract

Jumlah penderita penyakit diabetes diproyeksikan akan terus meningkat dalam beberapa tahun mendatang. Pengukuran glukosa darah, olahraga, diet, dan pengobatan farmakologis adalah beberapa metode yang dapat digunakan untuk penanganan pasien penderita penyakit diabetes. Penggunaan metode yang sama tidak selalu efektif untuk setiap pasien diabates, karena respons setiap individu terhadap penggunaan metode terapi dapat berbeda-beda. Pendekatan berbasis Machine Learning telah banyak digunakan untuk penanganan penyakit diabetes, baik untuk deteksi dini maupun proses perawatan pasien diabetes. Pada konteks penanganan pasien diabetes mellitus, pemilihan terapi yang tepat bagi setiap pasien sangat penting untuk dapat mencapai kontrol glikemik yang baik dan mencegah komplikasi jangka panjang. Permasalahan dalam penanganan pasien diabetes adalah menentukan model yang tepat untuk setiap pasien yang berbeda, sehingga pendekatan model berbasis domain fitur menjadi sangat penting untuk diterapkan. Domain fitur yang digunakan dalam penelitian ini adalah demografi, riwayat medis, dan gaya hidup. Hasil pengujian didapatkan bahwa domain fitur riwayat medis menjadi faktor penting untuk deteksi kenaikan kadar gula dalam darah pasien diabetes. Tingkat akurasi yang didapatkan algoritma GBM dengan menggunakan domain fitur demografi, riwayat medis, dan gaya hidup adalah 96%. Dengan hasil pengujian aplikasi rekomendasi personalisasi pasien diabetes dapat gunakan oleh tenaga medis pada program Prolanis.   Kata kunci: Gradient Boosting Machine, Machine Learning, Diabetes, Domain Fitur
Evaluation of Machine Learning Models in Classifying Women's Labor Force Participation in West Java Siregar, Indra Rivaldi; Pratiwi, Windy Ayu; Nugraha, Adhiyatma; Sartono, Bagus; Firdawanti, Aulia Rizki
Techno.Com Vol. 24 No. 1 (2025): Februari 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i1.11945

Abstract

This study compares four classification models—Logistic Regression, Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Adaptive Boosting (AdaBoost)—to predict women's labor force participation in West Java, using a dataset of 62 features. After feature selection, the dataset was reduced to 31 features, followed by modeling with the top 10 most important features from each model. Model performance, evaluated using Balanced Accuracy, F1-Score, and Cohen’s Kappa, showed similar results, with RF and XGBoost slightly outperforming the others. However, the differences were not significant, indicating comparable predictive ability across models. The top 10 features from each model were averaged, and the five most influential features were selected. Key factors influencing women's employment status include household responsibilities, age, education, district minimum wage, and the age of the youngest child. The analysis found that 79.6% of unemployed women manage household duties, while employed women are less involved (18.9%). Age was significant, with employed women mostly in the 35-55 age range, correlating with older children and greater workforce participation. Additionally, employed women are more likely to come from regions with lower minimum wages, suggesting that economic necessity drives their labor market participation. Keywords: female labor force, machine learning, classification, West Java
Perbandingan Algoritma CNN, LSTM, FNN untuk Diagnosa Fibrosis Hati dengan Citra Medis Febryanto, Bagas Aji; Tahyudin, Imam
Techno.Com Vol. 24 No. 1 (2025): Februari 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i1.12020

Abstract

Fibrosis hati merupakan kondisi yang berpotensi berkembang menjadi sirosis atau kanker hati jika tidak terdiagnosis dengan tepat. Prosedur biopsi hati yang invasif sering digunakan dalam diagnosis, namun memiliki risiko dan keterbatasan biaya. Penelitian ini bertujuan untuk membandingkan kinerja model deep learning, yaitu Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Feedforward Neural Network (FNN) dalam klasifikasi fibrosis hati menggunakan citra medis. Metode yang digunakan adalah evaluasi kinerja model berdasarkan metrik akurasi, presisi, recall, F1-score, dan loss pada dataset citra medis fibrosis hati. Hasil penelitian menunjukkan bahwa CNN memberikan kinerja terbaik dengan akurasi 98%, diikuti oleh LSTM dengan akurasi 97%, dan FNN dengan akurasi 80%. CNN unggul karena kemampuannya dalam mengekstraksi fitur spasial secara otomatis dari citra medis, sementara LSTM lebih cocok untuk data sekuensial dan FNN terbatas dalam menangani data citra kompleks. Penelitian ini menyimpulkan bahwa CNN lebih efektif dalam klasifikasi fibrosis hati dan dapat menjadi alternatif non-invasif yang lebih efisien dibandingkan metode konvensional seperti biopsi. Teknologi ini berpotensi mempercepat diagnosis fibrosis hati dengan akurasi tinggi dan tanpa risiko komplikasi invasif.   Kata kunci: Fibrosis hati, CNN, LSTM, FNN, klasifikasi citra medis.
Evaluasi Performa XGBoost dengan Oversampling dan Hyperparameter Tuning untuk Prediksi Alzheimer Yahya, Furqon Nurbaril; Anshori, Mochammad; Khudori, Ahsanun Naseh
Techno.Com Vol. 24 No. 1 (2025): Februari 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i1.12057

Abstract

Alzheimer adalah gangguan neurodegeneratif yang mempengaruhi kemampuan kognitif dan memori, deteksi dini sangat penting untuk pengobatan yang tepat. Namun, untuk mendeteksi Alzheimer memerlukan biaya yang tinggi, sehingga penggunaan machine learning bisa menjadi alternatif yang lebih efisien. Salah satu tantangan utama dalam penerapan machine learning untuk mendeteksi Alzheimer adalah ketidakseimbangan data, di mana jumlah kasus positif (Alzheimer) jauh lebih sedikit daripada kasus negatif (sehat), yang berdampak pada kinerja model. Penelitian ini bertujuan untuk mengidentifikasi pengaruh teknik oversampling dan hyperparameter tuning terhadap hasil model XGBoost dalam prediksi Alzheimer. Empat eksperimen dilakukan untuk melihat masing-masing performa terhadap model, yaitu: (1) model dasar XGBoost, (2) XGBoost dengan oversampling, (3) XGBoost dengan hyperparameter tuning, dan (4) XGBoost dengan kombinasi oversampling dan hyperparameter tuning. Hasil penelitian menunjukkan bahwa eksperimen kedua (XGBoost + Oversampling) menghasilkan performa terbaik yaitu dengan recall 96,1%, Presisi 94%, akurasi 95,3%, dan F1-Score 95%. Temuan ini menunjukkan bahwa penerapan oversampling dapat meningkatkan kinerja model dalam mengatasi masalah ketidakseimbangan data. Penelitian ini memberikan kontribusi dalam pengembangan model deteksi Alzheimer dengan menekankan pentingnya penanganan ketidakseimbangan data.   Kata kunci: XGBoost, Oversampling, Hyperparameter Tuning, Prediksi Dini, Alzheimer.
Analisis Perbandingan Kinerja Backend API Menggunakan PHP, Golang, dan JavaScript Pratama, Fanes; Farisi, Ahmad
Techno.Com Vol. 24 No. 1 (2025): Februari 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i1.12080

Abstract

Pengembangan backend API yang efisien sangat penting dalam mendukung aplikasi web modern. Namun, pemilihan bahasa pemrograman dan metode query yang optimal masih menjadi tantangan bagi pengembang. Penelitian ini bertujuan untuk membandingkan kinerja backend RESTful API yang dibangun menggunakan tiga bahasa pemrograman (Go, PHP, dan JavaScript) serta empat metode pengambilan data (Raw SQL, ORM, Query Builder, dan Stored Procedure). Metode penelitian yang digunakan adalah kuantitatif true-experimental, dengan pengujian Load Testing, Spike Testing, dan Stress Testing untuk mengevaluasi jumlah permintaan yang berhasil, penggunaan CPU, dan penggunaan memori. Hasil pengujian menunjukkan bahwa Go dengan Raw SQL memiliki kinerja tertinggi dalam jumlah permintaan, waktu respons, dan penanganan beban, diikuti oleh Node.js, sementara PHP memiliki kinerja terendah.   Kata kunci: Backend API, Pengujian Kinerja, Metode Query

Page 1 of 3 | Total Record : 23


Filter by Year

2025 2025


Filter By Issues
All Issue Vol. 24 No. 3 (2025): Agustus 2025 Vol. 24 No. 2 (2025): Mei 2025 Vol. 24 No. 1 (2025): Februari 2025 Vol. 23 No. 4 (2024): November 2024 Vol. 23 No. 3 (2024): Agustus 2024 Vol. 23 No. 2 (2024): Mei 2024 Vol. 23 No. 1 (2024): Februari 2024 Vol. 22 No. 4 (2023): November 2023 Vol 22, No 3 (2023): Agustus 2023 Vol 22, No 2 (2023): Mei 2023 Vol. 22 No. 1 (2023): Februari 2023 Vol 21, No 4 (2022): November 2022 Vol 21, No 3 (2022): Agustus 2022 Vol 21, No 2 (2022): Mei 2022 Vol 21, No 1 (2022): Februari 2022 Vol 20, No 4 (2021): November 2021 Vol 20, No 3 (2021): Agustus 2021 Vol 20, No 2 (2021): Mei 2021 Vol 20, No 1 (2021): Februari 2021 Vol 19, No 4 (2020): November 2020 Vol 19, No 3 (2020): Agustus 2020 Vol 19, No 2 (2020): Mei 2020 Vol 19, No 1 (2020): Februari 2020 Vol. 18 No. 4 (2019): November 2019 Vol 18, No 3 (2019): Agustus 2019 Vol 18, No 2 (2019): Mei 2019 Vol 18, No 1 (2019): Februari 2019 Vol 17, No 4 (2018): November 2018 Vol 17, No 3 (2018): Agustus 2018 Vol 17, No 3 (2018): Agustus 2018 Vol 17, No 2 (2018): Mei 2018 Vol 17, No 1 (2018): Februari 2018 Vol 16, No 4 (2017): November 2017 Vol 16, No 3 (2017): Agustus 2017 Vol 16, No 2 (2017): Mei 2017 Vol 16, No 1 (2017): Februari 2017 Vol 15, No 4 (2016): November 2016 Vol 15, No 3 (2016): Agustus 2016 Vol 15, No 2 (2016): Mei 2016 Vol 15, No 1 (2016): Februari 2016 Vol 14, No 4 (2015): November 2015 (Hal. 242-342) Vol 14, No 3 (2015): Agustus 2015 (Hal. 165-241) Vol 14, No 2 (2015): Mei 2015 (Hal. 79-164) Vol 14, No 1 (2015): Februari 2015 (Hal. 1-78) Vol 13, No 4 (2014): November 2014 (Hal. 198-262) Vol 13, No 3 (2014): Agustus 2014 (Hal. 132-197) Vol 13, No 2 (2014): Mei 2014 (Hal. 69-131) Vol 13, No 1 (2014): Februari 2014 (Hal. 1-68) Vol 12, No 4 (2013): November 2013 (Hal. 188-240) Vol 12, No 3 (2013): Agustus 2013 (Hal. 136-187) Vol 12, No 2 (2013): Mei 2013 (Hal. 73-135) Vol 12, No 1 (2013): Februari 2013 (Hal. 1-72) Vol 11, No 4 (2012): November 2012 (Hal. 156-210) Vol 11, No 3 (2012): Agustus 2012 (Hal. 108-158) Vol 11, No 2 (2012): Mei 2012 (Hal. 55-106) Vol 11, No 1 (2012): Februari 2012 (Hal. 1-54) More Issue