cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Jurnal Buana Informatika
ISSN : 20872534     EISSN : 20897642     DOI : -
Core Subject : Science,
Arjuna Subject : -
Articles 594 Documents
Pemanfaatan Algoritma Porter Stemmer Untuk Bahasa Indonesia Dalam Proses Klasifikasi Jenis Buku Bonifacius Vicky Indriyono; Ema Utami; Andi Sunyoto
Jurnal Buana Informatika Vol. 6 No. 4 (2015): Jurnal Buana Informatika Volume 6 Nomor 4 Oktober 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i4.462

Abstract

Abstract. Stemming is the process of mapping and decomposition of various forms (variants) of a word to essentially find the root word. This process is also referred to as the conflation. Stemming process has been widely used in the activities of the information retrieval (search information) to improve the quality of the information obtained. Stemming works by employing words taken froma dictionary and the usage of the basic rules of affixes. Porter stemmer for Indonesian or commonly referred as Tala stemmer uses the rules of basic analysis to find the root of a word. Tala Stemmer does not use a dictionary in the process. Instead, it uses a rule-based algorithm. In this study, the principal issue raised is how to make the process of classification/determination of the book/library materials in a library with a fast and effective manner in order to minimize error in determining the type of books. The solution is to utilize the method used by the porter stemmer for stemming Indonesian.Keywords: Stemming, Information Retrieval, Porter Stemmer, Classification Abstrak. Stemming adalah proses pemetaan dan penguraian berbagai bentuk (variants) dari suatu kata menjadi bentuk kata dasarnya. Proses ini juga disebut sebagai conflation. Proses stemming secara luas sudah digunakan di dalam kegiatan Information retrieval (pencarian informasi) untuk meningkatkan kualitas informasi yang didapatkan. Cara kerja stemming dapat dilakukan dengan menggunakan kamus kata dasar maupun menggunakan aturan-aturan imbuhan. Porter stemmer untuk Bahasa Indonesia atau yang biasa disebut dengan stemmer Tala menggunakan rule base analisis untuk mencari root sebuah kata. Stemmer Tala tidak menggunakan kamus dalam proses, melainkan menggunakan algoritma berbasis aturan. Dalam penelitian ini, pokok permasalahan yang diangkat adalah bagaimana melakukan proses klasifikasi/penentuan jenis buku/bahan pustaka dalam sebuah perpustakaan dengan cara yang cepat dan efektif sehingga dapat meminimalisir kesalahan penentuan jenis buku. Solusi yang dipergunakan adalah dengan memanfaatkan metode stemming dengan porter stemmer untuk bahasa Indonesia.Kata Kunci: Stemming, Information Retrieval, Porter Stemmer, Klasifikasi
Pemetaan Secara Sistematis Pada Metrik Kualitas Perangkat Lunak Mamluatul Hani’ah; Yogi Kurniaawan; Umi Laili Yuhana
Jurnal Buana Informatika Vol. 6 No. 4 (2015): Jurnal Buana Informatika Volume 6 Nomor 4 Oktober 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i4.463

Abstract

Abstract. Software quality assurance is one method to increase quality of software. Improvement of software quality can be measured with software quality metric. Software quality metrics are part of software quality measurement model. Currently software quality models have a very diverse types, so that software quality metrics become increasingly diverse. The various types of metrics to measure the quality of software create proper metrics selection issues to fit the desired quality measurement parameters. Another problem is the validation need to be performed on these metrics in order to obtain objective and valid results. In this paper, a systematic mapping of the software quality metric is conducted in the last nine years. This paper brings up issues in software quality metrics that can be used by other researchers. Furthermore, current trends are introduced and discussed.Keywords: Software Quality, Software Assesment, Metric Abstrak. Penjaminan kualitas suatu perangkat lunak merupakan salah satu cara meningkatkan kualitas suatu perangkat lunak. Metrik kualitas perangkat lunak merupakan bagian dari model pengukuran kualitas perangkat lunak. Model kualitas perangkat lunak memiliki jenis yang sangat beragam, sehinggga metrik kualitas perangkat lunak menjadi semakin beragam jenisnya. Beragamnya jenis metrik pengukuran kualitas perangkat lunak memberikan permasalahan pemilihan metrik yang tepat agar sesuai dengan parameter pengukuran kualitas yang diinginkan. Permasalahan yang lain adalah validasi yang harus dilakukan terhadap metrik tersebut agar diperoleh hasil yang obyektif dan valid. Dalam makalah ini akan dilakukan pemetaan sistemastis terhadap metrik pengukuran kualitas perangkat lunak pada sembilan tahun terakhir. Diharapkan dengan pemetaan sistematis akan dapat memunculkan permasalahan-permasalahan pada metrik kualitas perangkat lunak yang dapat digunakan sebagai penelitian untuk peneliti yang lain. Kata Kunci: Kualitas Perangkat Lunak, Penjaminan Perangkat Lunak, Metrik
Analisis Karakteristik Teori Antrian Pada Aplikasi Wireless Fidelity Menggunakan Opnet Modeler 14.5 Eko Fajar Cahyadi; Putra Utama Eka Sakti; Alfin Hikmaturokhman
Jurnal Buana Informatika Vol. 6 No. 4 (2015): Jurnal Buana Informatika Volume 6 Nomor 4 Oktober 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i4.464

Abstract

Abstract. Wi-Fi areas are accessible in many places, it makes it easier to access the Internet rather than using LAN cable. On the other hand, the Internet itself is a best effort network, which means it does not provide Quality of Service (QoS) mechanism and no traffic classification. This study evaluates the performance of three scheduling methods, including FIFO, Priority Queuing (PQ), and Weighted Fair Queuing (WFQ), on video conference, VoIP and FTP services, implemented in ST3 Telkom campus networks. The results of packet end-to-end delay and packet delay variation for VoIP in WFQ theory scenario is better than the others, that is 171,717ms and 0,977ms. While in video conference services, the result of packet end-to-end delay and packet delay variation in WFQ theory is better than other queuing theory as well, 32,495ms and 7,207ms respectively. This is because the WFQ scheduling mechanism has bandwidth allocation that adapts well to the requirements of the services.Keywords: Wi-Fi, QoS, FIFO, PQ, WFQ Abstrak. Area Wi-Fi banyak kita jumpai di berbagai tempat, menjadikannya sebagai media akses internet yang lebih mudah untuk digunakan dibandingkan menggunakan kabel LAN. Di lain sisi, internet sendiri merupakan jaringan yang bersifat best effort, yang berarti tidak menyediakan mekanisme Quality of Service (QoS) dan tidak ada klasifikasi trafik layanan. Penelitian ini mengevaluasi mengenai performansi dari tiga metode scheduling, diantaranya FIFO, Priority Queuing (PQ), dan Weighted Fair Queuing (WFQ), pada layanan video conference, VoIP dan FTP, menggunakan topologi Wi-Fi kampus ST3 Telkom. Nilai packet end-to-end delay dan packet delay variation untuk VoIP pada skenario WFQ lebih baik dibandingkan teori antrian lain, yaitu sebesar 171,717ms dan 0,977ms secara berurutan. Pada video conference, nilai packet end-to-end delay dan packet delay variation WFQ juga lebih baik dibandingkan teori antrian lain, yaitu dengan nilai 32,495ms dan 7,207ms secara berurutan. Hal ini dikarenakan pada WFQ memiliki alokasi bandwidth yang disesuaikan dengan kebutuhan.Kata Kunci: Wi-Fi, QoS, FIFO, PQ, WFQ
Pengenalan Wajah Menggunakan Implementasi T-shape Mask pada Two Dimentional Linear Discriminant Analysis dan Support Vector Machine Ahmad Reza Musthafa; Alif Akbar Fitrawan; Supria Supria
Jurnal Buana Informatika Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.478

Abstract

Abstract. Face recognition is the identification process to recognize a person's face. Many studies have been developing face recognition methods, one of which is the Two Dimensional Linear Discriminant Analysis (TDLDA) which has pretty good accuracy results with the method of classification Support Vector Machine (SVM). With more training data can add computational time. TDLDA using all the piksel image as input to be processed for feature extraction. Though not all the objects in the area of the face is a significant feature in face recognition. In this study, the proposed use of the T-shape with only use a significant part is the eyes, nose, and mouth are integrated with TDLDA and SVM. The result could reduce computing time on face recognition 21.56% faster than TDLDA method. The accuracy of the results in this study was 91% -96% which is close to the level of accuracy without using a mask on the face.Keyword: face recognition, T-shape, TDLDA, Support vector machine. Abstrak. Pengenalan wajah merupakan proses identifikasi untuk mengenali wajah seseorang. Telah Banyak penelitian yang mengembangkan metode pengenalan wajah, salah satunya adalah Two Dimensional Linear Discriminant Analysis (TDLDA) yang memiliki hasil akurasi yang cukup baik dengan metode klasifikasi Support Vector Machine (SVM). Dengan semakin banyak data training dapat menambah waktu komputasinya. TDLDA menggunakan semua piksel citra sebagai masukan yang akan diproses untuk ekstrasi fitur. Padahal tidak semua objek pada area wajah merupakan fitur yang signifikan dalam pengenalan wajah. Dalam penelitian ini diusulkan penggunaan T-shape dengan hanya menyimpan bagian yang signifikan yaitu mata, hidung, dan mulut yang diintegrasikan dengan TDLDA dan SVM. Hasilnya dapat mengurangi waktu komputasi pada pengenalan wajah 21,56% lebih cepat daripada metode TDLDA. Hasil akurasi pada penelitian ini adalah 91%-96% yang mendekati tingkat akurasi tanpa menggunakan mask pada wajah.Kata Kunci: pengenalan wajah, T-shape, TDLDA, Support vector machine.
Penggabungan Fitur Bentuk dan Fitur Tekstur yang Invariant terhadap Rotasi untuk Klasifikasi Citra Pap Smear Yuwanda Purnamasari Pasrun; Chastine Fatichah; Nanik Suciati
Jurnal Buana Informatika Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.479

Abstract

Abstract. Pap test is a cervical cancer screening manually and requires a long time that it needs an exact cell classification system based computers. Features determination by observation in characteristic differences between the datasets visually betweenclass will help a cell classification results which has relevant characteristics between classes. In addition, the change in orientation of the cells at the time of the acquisition will affect the value of the generated feature so extraction method that is rotation invariant is needed to overcome that problem. This research proposes the combination of simple shapes feature and the texture feature from extraction Local Binary Pattern Histogram Fourier (LBP-HF) that invariant to rotation as additional features to classify pap smear images. The result show that the proposed feature combination yield good performance with accuracy 92.44% for two category cell and 70.06% for seven class cell.Keywords: classification, lbp-hf,  pap smear image, shape feature.Abstrak. Pap test adalah pemeriksaan kanker serviks secara manual yang membutuhkan waktu yang lama sehingga dibutuhkan sistem klasifikasi sel berbasis komputer yang tepat. Penentuan fitur melalui observasi pada perbedaan ciri antarkelas secara visual pada dataset akan membantu hasil klasifikasi sel untuk mendapatkan ciri yang relevan antarkelas. Selain itu, adanya perubahan orientasi sel pada saat akuisisi akan mempengaruhi nilai fitur yang dihasilkan sehingga dibutuhkan metode ekstraksi fitur yang invariant terhadap rotasi. Penelitian ini mengusulkan penggabungan fitur bentuk sederhana dan fitur tekstur dengan ekstraksi fitur Local Binary Pattern –Histogram Fourier yang invariant terhadap rotasi sebagai ciri tambahan dalam mengklasifikasikan citra pap smear. Hasilnya menunjukkan bahwa kombinasi fitur menghasilkan performa yang baik dengan akurai 92,44% untuk dua kategori sel dan 70,06% untuk tujuh kelas sel.Kata Kunci: klasifikasi, lbp-hf, citra pap smear, fitur bentuk.
Penggabungan Fitur Tekstur yang Invariant terhadap Iluminasi dan Fitur Bentuk untuk Deteksi Acute Lymphoblastic Leukemia Rizal A Saputra; Chastine Fatichah; Nanik Suciati
Jurnal Buana Informatika Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.481

Abstract

Abstract. Detection with microscopic blood image can help early detection of Accute Lymphoblastic Leukemia (ALL). Therefore, image acquisition process under lighting variation cause varying illumination image, so it’s needed to find texture feature extraction method that is invariant towards illumination. Shape feature also needed in this study because can represent characteristics of microscopic blood image.This study proposes combination of texture feature that is illumination invariant and shape feature for ALL detection. Texture feature will be extracted using Complete Robust Local Binary Pattern (CRLBP) method and will be tested on microscopic blood image dataset named ALL_IDB1. Testing will be conducted by using various combination of different texture feature and shape feature. Combination of shape feature and CRLBP is perform better than others. In indvidual cell test, highest result using SVM Linear with accuracy 90.89%, sensitivity 94.24% and specificity 64.82%. Classification using ALL image reach accuracy 88.00 %, sensitivity 82.35% and specificity 100%.Keywords: Acute Lymphoblastic Leukemia detection, Complete Robust Local Bianry Pattern, Local Binary Pattern, shape feature, texture feature. Abstrak. Deteksi dengan citra mikroskopik sel darah dapat membantu untuk deteksi dini Accute Lymphoblastic Leukemia (ALL). Namun, proses akuisisi citra mikroskopik dengan variasi pencahayaan yang berbeda menyebabkan iluminasi citra menjadi beragam sehingga dibutuhkan metode yang dapat mengekstraksi fitur tekstur yang invariant terhadap iluminasi. Fitur bentuk juga dibutuhkan dalam penelitian ini karena dapat merepresentasikan perbedaan pada citra mikroskopik sel darah. Penelitian ini mengusulkan penggabungan fitur tekstur yang invariant terhadap iluminasi dan fitur bentuk untuk deteksi dini ALL. Fitur tekstur akan diekstraksi dengan menggunakan metode Complete Robust Local Binary Pattern (CRLBP) dan diuji coba pada dataset ALL_IDB1. Uji coba dilakukan dengan variasi penggabungan fitur bentuk dan fitur tekstur. Penggabungan fitur bentuk dan CRLBP merupakan kombinasi fitur dengan performansi paling baik. Pada pengujian sel tunggal memberikan hasil tertinggi pada klasifikasi SVM Linear dengan akurasi 90,89%, sensitifitas 94,24% dan sepesifisitas 64,82%. Pada klasifikasi citra ALL akurasi mencapai 88,00%, dengan sensitifitas 82,35% dan spesifisitas 100%.Kata Kunci: Complete Robust Local Binary Pattern, deteksi Acute Lymphoblastic Leukemia, Local Binary Pattern, fitur bentuk, fitur tekstur
Peringkasan Dokumen Berbahasa Inggris Menggunakan Sebaran Local Sentence Aminul Wahib; Agus Zainal Arifin; Diana Purwitasari
Jurnal Buana Informatika Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.482

Abstract

Abstract. The number of digital documents grows very rapidly causing time waste in searching and reading the information. To overcome these problems, many document summary methods are developed to find important or key sentences from the source document. This study proposes a new strategy in summarizing English document by using local sentence distribution method to find and dig up hidden important sentence from the source document in an effort to improve quality of the summaries. Experiments are conducted on dataset DUC 2004 task 2. Measurement ROUGE-1 and ROUGE-2 are employed as a performance evaluation of the proposed method with sentence information density and sentence cluster keyword (SIDeKiCK). The experiment shows that the proposed method has better performance with an average achievement ROUGE-1 0.398, an increase of 1.5% compared to SIDeKiCK method and ROUGE-2 0.12, an increase 13% compared to SIDeKiCK method.Keywords: Summarize Document, Important Sentences, Distribution of Local Sentence, ROUGE. Abstrak. Jumlah dokumen digital yang berkembang sangat pesat menyebabkan banyaknya waktu terbuang dalam mencari dan membaca informasi. Untuk mengatasi permasalahan tersebut banyak dikembangkan metode peringkasan dokumen yang diharapkan mampu menemukan kalimat-kalimat penting dari dokumen sumber. Penelitian ini mengajukan strategi baru peringkasan dokumen berbahasa inggris menggunakan metode sebaran local sentence untuk mencari dan menggali kalimat penting yang tersembunyi dalam dokumen sumber sebagai upaya untuk meningkatkan kualitas hasil ringkasan. Uji coba dilakukan terhadap dataset task 2 DUC 2004. Pengukuran ROUGE-1 dan ROUGE-2 digunakan sebagai evaluasi performa metode yang diusulkan dengan metode lain yaitu metode sentence information density dan kata kunci cluster kalimat (SIDeKiCK). Hasil ujicoba didapatkan bahwa metode yang diusulkan memiliki performa lebih baik dengan capaian rata-rata ROUGE-1 0,398, meningkat 1,5% dibanding metode SIDeKiCK dan ROUGE-2 0,12 meningkat 13% dibanding metode SIDeKiCK.Kata Kunci: Peringkasan Dokumen, Kalimat Penting, Sebaran Local Sentence, ROUGE.
Three-level Local Thresholding Berbasis Metode Otsu untuk Segmentasi Leukosit pada Citra Leukemia Limfoblastik Akut Eka Prakarsa Mandyartha; Chastine Fatichah
Jurnal Buana Informatika Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.483

Abstract

Abstract. Segmentation of Acute Lymphoblastic Leukemia (ALL) images can be used to identify the presence of ALL disease. In this paper, three-level local thresholdings based on Otsu method is presented for leucocytes segmentation in ALL image. Firstly, a method based on Gram-Schmidt orthogonalization theory is applied to partition the input image into several sub-images. The proposed method extends Otsu’s bi-level thresholding to three-level thresholding method  to find two local threshold values that maximize between-class variance. Using the two local threshold values and three-level local thresholding technique then segmenting each of sub-images into three regions, e.g. nucleus, cytoplasm, and background. To evaluate the performance of the proposed method, 32 peripheral blood smear images are used. The performance of the proposed method is compared with manually segmented ground truth using Zijdenbos similarity index (ZSI), precision, and recall. An experimental evaluation demonstrates superior performance over three-level global thresholding for ALL image segmentation.Keywords: three-level local thresholding, acute lymphoblastic leukemia, three-level Otsu thresholding, gram-schmidt orthogonalizationAbstrak. Segmentasi citra Limfoblastik Leukemia Akut (LLA) dapat digunakan untuk mengidentifikasi kehadiran penyakit LLA. Pada penelitian ini diusulkan metode three-level local thresholding berbasis metode Otsu untuk segmentasi leukosit pada citra LLA. Pertama-tama, metode berbasis teori ortogonalisasi Gram-Schmidt diaplikasikan untuk membagi citra LLA menjadi sub-sub citra. Metode yang diusulkan memperluas metode bi-level thresholding Otsu ke dalam kasus three-level thresholding untuk pencarian dua nilai ambang lokal tiap sub-citra yang memaksimumkan varian antar kelas. Dengan nilai ambang jamak lokal tersebut, teknik three-level local thresholding selanjutnya  mensegmentasi tiap sub-citra ke dalam tiga region, yaitu nukelus, sitoplasma, dan latar belakang. Untuk mengevaluasi performa metode usulan, 32 citra uji digunakan. Performa metode yang diusulkan dibandingkan dengan citra segmentasi manual menggunakan Zijdenbos similarity index (ZSI), presisi, dan recall. Hasil uji coba menunjukkan performa three-level local thresholding lebih unggul daripada metode three-level global thresholding untuk segmentasi citra LLA. Kata Kunci: three-level local thresholding, leukemia limfoblastik akut, three-level Otsu thresholding, ortogonalisasi gram-schmidt
A Hybrid Firefly Algorithm - Ant Colony Optimization for Traveling Salesman Problem Olief Ilmandira Ratu Farisi; Budi Setiyono; R. Imbang Danandjojo
Jurnal Buana Informatika Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.484

Abstract

Abstract. In this paper, we develop a novel method hybrid firefly algorithm-ant colony optimization for solving traveling salesman problem. The ACO has distributed computation to avoid premature convergence and the FA has a very great ability to search solutions with a fast speed to converge. To improve the result and convergence time, we used hybrid method. The hybrid approach involves local search by the FA and global search by the ACO. Local solution of FA is normalized and is used to initialize the pheromone for the global solution search using the ACO. The outcome are compared with FA and ACO itself. The experiment showed that the proposed method can find the solution much better without trapped into local optimum with shorter computation time.Keywords: Traveling Salesman Problem, Firefly Algorithm, Ant Colony Optimization, hybrid method.Abstrak. Pada penelitian ini dikembangkan suatu metode baru yaitu hybrid firefly algorithm-ant colony optimization (hybrid FA-ACO) untuk menyelesaikan masalah traveling salesman problem (TSP). ACO memiliki komputasi terdistribusi sehingga dapat mencegah konvergensi dini dan FA memiliki kemampuan konvergensi yang cepat dalam pencarian solusi. Untuk memperbaiki solusi dan mempercepat waktu konvergensi, digunakan metode kombinasi. Pendekatan kombinasi ini meliputi pencarian solusi dengan FA dan pencarian global dengan ACO. Solusi lokal dari FA dinormalisasi dan digunakan untuk menginisialisasi feromon untuk pencarian global ACO. Hasil dari hybrid FA-ACO dibandingkan dengan FA dan ACO. Hasil penelitian menunjukkan bahwa metode yang diusulkan dapat menemukan solusi yang lebih baik tanpa terjebak lokal optimum dengan waktu komputasi lebih pendek.Kata kunci: Traveling Salesman Problem, Firefly Algorithm, Ant Colony Optimization, metode hybrid.
Aplikasi Deteksi Dini Tumbuh Kembang Anak Usia Nol Hingga Enam Tahun Berbasis Android Nia Saurina
Jurnal Buana Informatika Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.485

Abstract

Abstract. We can classify children growth into two groups: children growth which means a process for children physical development in which there is an increase in organ measure; and ‘Children development’ which means an increase of cells function and structures based on cell maturity. Based on Indonesia Ministry of Health data, in 2013 16% of Indonesian children under 5 years old experience a development disorder, such as both of gross and fine motor development disorders, hearing impairment, intelligence disorder, and delays of speech. They are caused by late identification. In Indonesia there is a scheme named puskesmas which can identify the problems. Unfortunately not all mothers can monitor their children because of their activities or lack of knowledge. This research needs to make growth and development disorders early detection application based on android for 0-6 age children. The users of this application are parents and medical team in puskesmas. This aplication will inform them of the children growth and development; it can identify growth and development disorders and give advice to solve the problems.   Keywords: early detection, child and development disorder, Android. Abstrak. Tumbuh kembang anak memiliki dua fase yang berbeda, yaitu pertumbuhan merupakan suatu proses perubahan fisik yang ditandai dengan bertambahnya berbagai ukuran berbagai organ tubuh; dan perkembangan merupakan suatu proses bertambahnya kemampuan dan struktur dan fungsi tubuh yang lebih kompleks sebagai hasil dan pematangan sel-sel. Menurut Depkes RI, 2013 bahwa 16% balita Indonesia mengalami gangguan perkembangan, baik perkembangan motorik halus dan kasar, gangguan pendengaran, kecerdasan kurang dan keterlambatan bicara. Puskesmas merupakan pelayanan kesehatan masyarakat. Tetapi saat ini keaktifan ibu dalam memonitoring tumbuh kembang anaknya mengalami penurunan, dikarenakan kesibukan maupun malas. Tujuan penelitian adalah membuat aplikasi deteksi dini tumbuh kembang anak yang berusia nol hingga enam tahun berbasis android. Aplikasi ini ditujukan bagi orang tua serta tim medis kesehatan yang bertugas di Puskesmas guna memberikan informasi mengenai tumbuh kembang anak, menemukenali penyimpangan pertumbuhan dan dapat memberikan saran stimulasi dini apa yang harus diberikan kepada anak.Kata Kunci: Deteksi Dini, Tumbuh Kembang Anak, Android.

Filter by Year

2010 2025


Filter By Issues
All Issue Vol. 16 No. 01 (2025): Jurnal Buana Informatika, Volume 16, Nomor 01, April 2025 Vol. 16 No. 2 (2025): Jurnal Buana Informatika, Volume 16, Nomor 02, Oktober 2025 Vol. 15 No. 01 (2024): Jurnal Buana Informatika, Volume 15, Nomor 01, April 2024 Vol. 15 No. 2 (2024): Jurnal Buana Informatika, Volume 15, Nomor 02, Oktober 2024 Vol. 14 No. 02 (2023): Jurnal Buana Informatika, Volume 14, Nomor 2, Oktober 2023 Vol. 14 No. 01 (2023): Jurnal Buana Informatika, Volume 14, Nomor 1, April 2023 Vol. 13 No. 02 (2022): Jurnal Buana Informatika, Volume 13, Nomor 2, Oktober 2022 Vol. 13 No. 1 (2022): Jurnal Buana Informatika, Volume 13, Nomor 1, April 2022 Vol 12, No 2 (2021): Jurnal Buana Informatika Volume 12 - Nomor 2 - Oktober 2021 Vol. 12 No. 2 (2021): Jurnal Buana Informatika Volume 12 - Nomor 2 - Oktober 2021 Vol. 12 No. 1 (2021): Jurnal Buana Informatika Volume 12 - Nomor 1 - April 2021 Vol 12, No 1 (2021): Jurnal Buana Informatika Volume 12 - Nomor 1 - April 2021 Vol. 11 No. 2: Vol 11, No 2 (2020): Jurnal Buana Informatika Volume 11 - Nomor 2 - Okober 2020 Vol 11, No 2: Vol 11, No 2 (2020): Jurnal Buana Informatika Volume 11 - Nomor 2 - Okober 2020 Vol 11, No 1 (2020): Jurnal Buana Informatika Volume 11 - Nomor 1 - April 2020 Vol. 11 No. 1 (2020): Jurnal Buana Informatika Volume 11 - Nomor 1 - April 2020 Vol 10, No 2 (2019): Jurnal Buana Informatika Volume 10 Nomor 2 Oktober 2019 Vol. 10 No. 2 (2019): Jurnal Buana Informatika Volume 10 Nomor 2 Oktober 2019 Vol 10, No 1 (2019): Jurnal Buana Informatika Volume 10 Nomor 1 April 2019 Vol. 10 No. 1 (2019): Jurnal Buana Informatika Volume 10 Nomor 1 April 2019 Vol. 9 No. 2 (2018): Jurnal Buana Informatika Volume 9 Nomor 2 Oktober 2018 Vol 9, No 2 (2018): Jurnal Buana Informatika Volume 9 Nomor 2 Oktober 2018 Vol. 9 No. 1 (2018): Jurnal Buana Informatika Volume 9 Nomor 1 April 2018 Vol 9, No 1 (2018): Jurnal Buana Informatika Volume 9 Nomor 1 April 2018 Vol 8, No 4 (2017): Jurnal Buana Informatika Volume 8 Nomor 4 Oktober 2017 Vol. 8 No. 4 (2017): Jurnal Buana Informatika Volume 8 Nomor 4 Oktober 2017 Vol 8, No 3 (2017): Jurnal Buana Informatika Volume 8 Nomor 3 Juli 2017 Vol. 8 No. 3 (2017): Jurnal Buana Informatika Volume 8 Nomor 3 Juli 2017 Vol. 8 No. 2 (2017): Jurnal Buana Informatika Volume 8 Nomor 2 April 2017 Vol 8, No 2 (2017): Jurnal Buana Informatika Volume 8 Nomor 2 April 2017 Vol 8, No 1 (2017): Jurnal Buana Informatika Volume 8 Nomor 1 Januari 2017 Vol. 8 No. 1 (2017): Jurnal Buana Informatika Volume 8 Nomor 1 Januari 2017 Vol 7, No 4 (2016): Jurnal Buana Informatika Volume 7 Nomor 4 Oktober 2016 Vol. 7 No. 4 (2016): Jurnal Buana Informatika Volume 7 Nomor 4 Oktober 2016 Vol 7, No 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016 Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016 Vol. 7 No. 2 (2016): Jurnal Buana Informatika Volume 7 Nomor 2 April 2016 Vol 7, No 2 (2016): Jurnal Buana Informatika Volume 7 Nomor 2 April 2016 Vol 7, No 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016 Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016 Vol 6, No 4 (2015): Jurnal Buana Informatika Volume 6 Nomor 4 Oktober 2015 Vol 6, No 4 (2015): Jurnal Buana Informatika Volume 6 Nomor 4 Oktober 2015 Vol. 6 No. 4 (2015): Jurnal Buana Informatika Volume 6 Nomor 4 Oktober 2015 Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015 Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015 Vol. 6 No. 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015 Vol 6, No 2 (2015): Jurnal Buana Informatika Volume 6 Nomor 2 April 2015 Vol. 6 No. 2 (2015): Jurnal Buana Informatika Volume 6 Nomor 2 April 2015 Vol 6, No 2 (2015): Jurnal Buana Informatika Volume 6 Nomor 2 April 2015 Vol 6, No 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015 Vol 6, No 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015 Vol. 6 No. 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015 Vol. 5 No. 2 (2014): Jurnal Buana Informatika Volume 5 Nomor 2 Juli 2014 Vol 5, No 2 (2014): Jurnal Buana Informatika Volume 5 Nomor 2 Juli 2014 Vol 5, No 1 (2014): Jurnal Buana Informatika Volume 5 Nomor 1 Januari 2014 Vol. 5 No. 1 (2014): Jurnal Buana Informatika Volume 5 Nomor 1 Januari 2014 Vol 5, No 1 (2014): Jurnal Buana Informatika Volume 5 Nomor 1 Januari 2014 Vol. 4 No. 2 (2013): Jurnal Buana Informatika Volume 4 Nomor 2 Juli 2013 Vol 4, No 2 (2013): Jurnal Buana Informatika Volume 4 Nomor 2 Juli 2013 Vol 4, No 2 (2013): Jurnal Buana Informatika Volume 4 Nomor 2 Juli 2013 Vol. 4 No. 1 (2013): Jurnal Buana Informatika Volume 4 Nomor 1 Januari 2013 Vol 4, No 1 (2013): Jurnal Buana Informatika Volume 4 Nomor 1 Januari 2013 Vol 4, No 1 (2013): Jurnal Buana Informatika Volume 4 Nomor 1 Januari 2013 Vol 3, No 2 (2012): Jurnal Buana Informatika Volume 3 Nomor 2 Juli 2012 Vol 3, No 2 (2012): Jurnal Buana Informatika Volume 3 Nomor 2 Juli 2012 Vol. 3 No. 2 (2012): Jurnal Buana Informatika Volume 3 Nomor 2 Juli 2012 Vol 3, No 1 (2012): Jurnal Buana Informatika Volume 3 Nomor 1 Januari 2012 Vol. 3 No. 1 (2012): Jurnal Buana Informatika Volume 3 Nomor 1 Januari 2012 Vol 3, No 1 (2012): Jurnal Buana Informatika Volume 3 Nomor 1 Januari 2012 Vol 2, No 2 (2011): Jurnal Buana Informatika Volume 2 Nomor 2 Juli 2011 Vol. 2 No. 2 (2011): Jurnal Buana Informatika Volume 2 Nomor 2 Juli 2011 Vol 2, No 2 (2011): Jurnal Buana Informatika Volume 2 Nomor 2 Juli 2011 Vol 2, No 1 (2011): Jurnal Buana Informatika Volume 2 Nomor 1 Januari 2011 Vol 2, No 1 (2011): Jurnal Buana Informatika Volume 2 Nomor 1 Januari 2011 Vol. 2 No. 1 (2011): Jurnal Buana Informatika Volume 2 Nomor 1 Januari 2011 Vol 1, No 2 (2010): Jurnal Buana Informatika Volume 1 Nomor 2 Juli 2010 Vol. 1 No. 2 (2010): Jurnal Buana Informatika Volume 1 Nomor 2 Juli 2010 Vol 1, No 2 (2010): Jurnal Buana Informatika Volume 1 Nomor 2 Juli 2010 Jurnal Buana Informatika Volume 1 Nomor 1 Januari 2010 Jurnal Buana Informatika Volume 1 Nomor 1 Januari 2010 More Issue