cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Jurnal Buana Informatika
ISSN : 20872534     EISSN : 20897642     DOI : -
Core Subject : Science,
Arjuna Subject : -
Articles 594 Documents
Kombinasi Sinyal EEG dan Giroskop untuk Kendali Mobil Virtual dengan Menggunakan Modifikasi ICA dan SVM Ahmad Reza Musthafa; Handayani Tjandrasa
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.655

Abstract

Abstract. Electroencephalogram (EEG) signals has been widely researched and developed in many fields of science. EEG signals could be classified into useful information for the application of Brain Computer Interface topic (BCI). In this research, we focus in a topic about driving a car using EEG signal. There are many approaches in EEG signal classification, but some approaches do not robust EEG signals that have many artifacts and have been recorded in real time. This research aims to classify EEG signals to obtain more optimal results, especially EEG signals with many artifacts and can be recorded in realtime. This research uses Emotiv EPOC device to record EEG signals in realtime. In this research, we propose the combination of Automatic Artifact Removal (AAR) and Support Vector Machine (SVM) which has 71% of accuracy that can be applied to drive a virtual car.Keyword: EEG signal classification, automatic artifact removal, brain computer interfaceAbstrak. Penelitian berbasis sinyal Electroencephalogram (EEG) telah banyak diteliti dan dikembangkan pada berbagai bidang ilmu pengetahuan. Sinyal EEG dapat diklasifikasikan ke dalam bentuk informasi untuk pengaplikasian topik Brain Computer Interface (BCI). Pada penelitian ini difokuskan pada topik pengendalian mobil menggunakan perintah sinyal EEG. Terdapat beberapa pendekatan dalam klasifikasi sinyal EEG, tetapi beberapa pendekatan tersebut tidak robust terhadap sinyal EEG yang memiliki banyak artefak dan direkam secara realtime. Penelitian ini bertujuan untuk mengklasifikasikan sinyal EEG dengan hasil lebih optimal, khususnya pada sinyal EEG yang memiliki banyak artefak dan direkam secara realtime. Penelitian ini menggunakan perangkat Emotiv EPOC untuk merekam sinyal EEG secara realtime. Pada penelitian ini diusulkan kombinasi Automatic Artifact Removal (AAR) dan Support Vector Machine (SVM) yang menghasilkan hasil akurasi sebesar 71% untuk klasifikasi sinyal EEG pada kasus pengendalian mobil virtual.Kata Kunci: EEG signal classification, automatic artifact removal, brain computer interface
Deteksi Bot Spammer pada Twitter Berbasis Sentiment Analysis dan Time Interval Entropy Christian Sri Kusuma Aditya; Mamluatul Hani’ah; Alif Akbar Fitrawan; Agus Zainal Arifin; Diana Purwitasari
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.656

Abstract

Abstract. Spam is an abuse of messaging undesired by recipients. Those who send spam are called spammers.  Popularity of Twitter has attracted spammers to use it as a means to disseminate spam messages. The spams are characterized by a neutral emotional sentiment or no particular users’ preference perspective. In addition, the regularity of tweeting behavior periodically shows automation performed by bot. This study proposes a new method to differentiate between bot spammer and legitimate user accounts by integrating the sentiment analysis (SA) based on emotions and time interval entropy (TIE). The combination of knowledge-based and machine learning-based were used to classify tweets with positive, negative and neutral sentiments. Furthermore, the collection of timestamp is used to calculate the time interval entropy of each account. The results show that the precision and recall of the proposed method reach up to 83% and 91%. This proves that the merging SA and TIE can optimize overall system performance in detecting Bot Spammer.Keywords: bot spammer, twitter, sentiment analysis, polarity, entropy Abstrak. Spam merupakan penyalahgunaan pengiriman pesan tanpa dikehendaki oleh penerimanya, orang yang mengirimkan spam disebut spammer. Ketenaran Twitter mengundang spammer untuk menggunakannya sebagai sarana menyebarluaskan pesan spam. Karakteristik dari tweet yang dikategorikan spam memiliki sentimen emosi netral atau tidak ada preferensi tertentu terhadap suatu perspektif dari user yang memposting tweet. Selain itu keteraturan waktu perilaku saat memposting tweet secara periodik menunjukkan otomatisasi yang dilakukan bot. Pada penelitian ini diusulkan metode baru untuk mendeteksi antara bot spammer dan legitimate user dengan mengintegrasikan sentimen analysis berdasarkan emosi dan time interval entropy. Pendekatan gabungan knowledge-based dan machine learning-based digunakan untuk mengklasifikasi tweet yang memiliki sentimen positif, negatif dan tweet netral. Selanjutnya kumpulan timestamp digunakan untuk menghitung time interval entropy dari tiap akun. Hasil percobaan menunjukan bahwa precision dan recall dari metode yang diusulkan mencapai 83% dan 91%. Hal ini membuktikan penggabungan Sentiment Analysis (SA) dan Time Interval Entropy (TIE) dapat mengoptimalkan performa sistem secara keseluruhan dalam mendeteksi Bot Spammer.Kata Kunci:  bot spammer, twitter, sentiment analysis,  polarity, entropy
Teknologi dan Teknik Sistem Komputasi Pervasif dalam Sistem Layanan Kesehatan: Studi Literatur Sistematis Danang Wahyu Utomo; Egia Rosi Subhiyakto
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.657

Abstract

Abstract. Technology of pervasive computing can be applied in daily activities such as sport, education, game and public interest such as public health. In healthcare system, the issues about high cost and errors in reviewing of patient record are still a major topic for healthcare provider (hospital). The technology of pervasive computing was developed to address these issues. This study will discuss the technology to support healthcare system. The main purpose is that users need to know the technology and its characteristics in order to prevent fatal actions in its use. The integration of different kinds of technology such as mobile devices, wireless networks, sensors, and wearable technologies is able to give better healthcare service than the technology itself.  Keywords: Technology, Pervasive Healthcare System, Systematic Literature Review. Abstrak. Teknologi komputasi pervasif dapat diterapkan dalam aktifitas manusia mulai dari kebutuhan pribadi seperti olahraga, belajar, permainan dan kepentingan umum seperti kesehatan umum. Dalam sistem layanan kesehatan,isu tentang biaya yang tinggi, adanya kesalahan dalam review data pasien masih menjadi topik utama bagi penyedia layanan kesehatan (rumah sakit). Teknologi komputasi pervasif dikembangkan untuk mengatasi masalah tersebut. Dalam makalah ini akan dibahas mengenai teknologi dan karakteristiknya dalam mendukung sistem layanan kesehatan. Tujuan utama adalah pengguna harus mengetahui teknologi dan karakteristiknya agar tidak terjadi tindakan fatal dalam penggunaanya. Integrasi antar teknologi seperti mobile device, wireless network, sensor, dan wearable technologies mampu memberikan layanan kesehatan yang lebih baik dibanding teknologi itu sendiri.         Kata Kunci: Teknologi, Sistem Layanan Kesehatan Pervasif, Studi Literatur Sistematis.
Segmentasi Citra Ikan Tuna dengan Mahalanobis Histogram Thresholding dan Mahalanobis Fuzzy C-Means Andi Baso Kaswar; Agus Zainal Arifin; Arya Yudhi Wijaya
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.658

Abstract

Abstract. Fuzzy C-Means segmentation algorithm based on Mahalanobis distance can be utilized to segment tuna fish image. However, initialization of pixels membership value and clusters centroid randomly cause the segmentation process become inefficient in terms of iteration and time of computation. This paper proposes a new method for tuna fish image segmentation by Mahalanobis Histogram Thresholding (M-HT) and Mahalanobis Fuzzy C-Means (MFCM). The proposed method consists of three main phases, namely: centroid initialization, pixel clustering and accuracy improvement. The experiment carried out obtained average of iteration amount is as many as 66 iteration with average of segmentation time as many as 162.03 second. While the average of Accuracy is 98.54%, average of Missclassification Error is 1.46%. The result shows that the proposed method can improve the efficiency of segmentation method in terms of number of iterations and time of segmentation. Besides that, the proposed method can give more accurate segmentation result compared with the conventional method.Keywords: Tuna Fish Image, Segmentation, Fuzzy Clustering, Histogram Thresholding, Mahalanobis Distance. Abstrak. Algoritma segmentasi Fuzzy C-Means berbasis jarak Mahalanobis dapat digunakan untuk mensegmentasi ikan tuna. Namun, inisialisasi derajat keanggotaan piksel dan centroid klaster secara random mengakibatkan proses segmentasi menjadi tidak efisien dalam hal iterasi dan waktu komputasi. Penelitian ini mengusulkan metode baru untuk segmentasi citra ikan tuna dengan Mahalanobis Histogram Thresholding (M-HT) dan Mahalanobis Fuzzy C-Means (MFCM). Metode ini terdiri atas tiga tahap utama, yaitu: inisialisasi centroid, pengklasteran piksel dan peningkatan akurasi. Berdasarkan hasil ekseprimen, diperoleh rata-rata jumlah iterasi sebanyak 66 iterasi dengan rata-rata waktu segmentasi 162,03 detik. Rata-rata Akurasi 98,54% dengan rata-rata tingkat Missclassification Error 1,46%. Hasil yang diperoleh menunjukkan bahwa metode yang diusulkan dapat meningkatkan efisiensi metode segmentasi dalam hal jumlah iterasi dan waktu segmentasi. Selain itu, metode yang diusulkan dapat memberikan hasil segmentasi yang lebih akurat dibandingkan dengan metode konvensional.Kata Kunci: Citra Ikan Tuna, Segmentasi, Fuzzy Clustering, Histogram Thresholding, Jarak Mahalanobis.
Kombinasi Fitur Bentuk, Warna dan Tekstur untuk Identifikasi Kesuburan Telur Ayam Kampung Sebelum Inkubasi Rohman Dijaya; Nanik Suciati; Darlis Herumurti
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.659

Abstract

Abstract. In the chicken nursery industry (doc) hatching efficiency is obtained by observing the eggs through candling before the incubation process. To sort out infertile eggs the use of fertility image identification thought egg candling is needed before incubation. The focus of this study is to combine the features of shape, texture and color to the area and egg yolk to determine the most dominant features in the image representing firtile egg candling. Features used in this study are the feature of forms: roundness, elongation, Index, Ellips Varriance and Circularity Ratio, moment invariant texture features of the area and the egg yolk, and features HSI color in egg yolks area. The test results show that the highest accuracy is on the features of the new forms of egg yolk with an accuracy of 76.67%. The second highest is shown by the combination of form features (Circularity Ratio, Ellips Varriance) and texture features in the area moment yolk color features HSI with 81.67% accuracy using SVM classification method.Keywords: Egg candling imagery, fertile, infertile, incubation Abstrak. Pada industri pembibitan ayam (doc) efisiensi penetasan telur ayam didapatkan dengan melakukan candling (peneropongan telur) sebelum proses inkubasi menggunakan mesin tetas. Untuk mengklasifikasikan telur fertile dan infertile dibutuhkan identifikasi kesuburan telur menggunakan citra candling sebelum inkubasi. Fokus dari penelitian ini adalah mengkombinasikan fitur bentuk, tekstur dan warna pada area kuning telur dan telur untuk mengetahui fitur yang paling dominan dalam merepresentasikan citra candling telur ayam kampung. Fitur yang digunakan dalam penelitian ini adalah fitur bentuk (Roundness, Elongation, Index, Ellips Varriance dan Circularity Ratio), fitur tektur moment invarian dari area telur dan kuning telur dan fitur warna HSI pada area kuning telur. Hasil pengujian menunjukkan akurasi tertinggi pada fitur bentuk kuning telur baru dengan akurasi 76,67% dan kombinasi fitur bentuk (Circularity Ratio, Ellips Varriance), fitur tekstur moment pada area kuning telur dengan fitur warna HSI dengan akurasi 81,67 % menggunakan metode klasifikasi SVM. Kata Kunci: Citra candling telur, fertile, infertile, inkubasi.
Ekstraksi Fitur Berdasarkan Deskriptor Bentuk dan Titik Salien Untuk Klasifikasi Citra Ikan Tuna Ratri Enggar Pawening; Agus Zainal Arifin; Anny Yuniarti
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.660

Abstract

Abstract. The manual classification of fish causes problems on accuracy and execution time. In the image of tuna, beside the shape feature, local features is also necessary to differentiate the types of fish especially which have a similar shape. The purpose of this study is to develop a new feature extraction system which integrates point of saline and the shape of descriptor to classify the image of tuna. The input image is then transformed into HSV format. Hue channel is selected for the segmentation process. Shape descriptors are extracted by using Fourier Descriptor (FD) and the saline points are extracted using Speeded Up Robust Features (SURF). The results of local features are performed by Bag of Feature (BOF). Feature integration combines shape descriptor and saline features with appropriate weight. Experimental results show that by integrating features, the classification problems of fish with similar shape can be resolved with an accuracy of classification acquired by 83.33%.Keywords: feature extraction, fourier descriptor, surf, classification, tuna fish imageAbstrak. Klasifikasi secara manual yang dilakukan berdasarkan bentuk, tekstur, dan bagian tubuh ikan dapat menimbulkan permasalahan pada akurasi dan waktu klasifikasi. Pada citra ikan tuna, selain diperlukan fitur bentuk juga diperlukan fitur lokal untuk membedakan jenis ikan terutama yang memiliki bentuk secara visual mirip. Tujuan penelitian ini adalah mengembangkan sistem ekstraksi fitur baru yang mengintegrasikan deskriptor bentuk dan titik salien untuk klasifikasi citra ikan tuna. Segmentasi diawali dengan mengambil kanal Hue pada citra HSV. Deskriptor bentuk diekstrak menggunakan Fourier Descriptor dan titik salien diekstrak menggunakan Speeded Up Robust Features. Untuk menyamakan dimensi dilakukan pemrosesan menggunakan Bag of Feature. Kedua jenis fitur yang sudah diperoleh dilakukan integrasi dengan mempertimbangkan bobot masing-masing fitur. Uji coba dilakukan pada dataset tiga jenis ikan tuna dengan 10-fold cross validation. Hasil uji coba menunjukkan dengan mengintegrasikan deskriptor bentuk dan titik salien permasalahan klasifikasi ikan tuna dengan bentuk yang mirip dapat diselesaikan dengan akurasi klasifikasi sebesar 83,33%.Kata Kunci: ekstraksi fitur, deskriptor fourier, surf, klasifikasi, citra ikan tuna
Segmentasi Citra Ikan Tuna Menggunakan Gradient-Barrier Watershed Berbasis Analisis Hierarki Klaster dan Regional Credibility Merging Arif Fadllullah; Agus Zainal Arifin; Dini Adni Navastara
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.661

Abstract

Abstract. The main issue of object identification in tuna image is the difficulty of extracting the entire contour of tuna physical features, because it is often influenced by uneven illumination and the ambiguity of object edges in tuna image. We propose a novel segmentation method to optimize the determination of tuna region using GBW-AHK and RCM. GBW-AHK is used to optimize the determination of adaptive threshold in order to reduce over-segmented watershed regions. Then, RCM merges the remaining regions based on two merging criteria, thus it produces two main areas of segmentation, the object extraction of tuna and the background. The experimental results on 25 tuna images demonstrate that the proposed method successfully produced an image segmentation with the average value of RAE by 4.77%, ME of 0.63%, MHD of 0.20, and the execution time was 11.61 seconds. Keywords: watershed, gradient-barrier, hierarchical cluster analysis, regional credibility merging, tuna segmentation Abstrak. Kendala utama identifikasi objek tuna pada citra ikan tuna adalah sulitnya mengekstraksi seluruh kontur tubuh ikan, karena seringkali dipengaruhi faktor iluminasi yang tidak merata dan ambiguitas tepi objek pada citra. Penelitian ini mengusulkan metode segmentasi baru yang mengoptimalkan penentuan region objek tuna menggunakan Gradient-Barrier Watershed berbasis Analisis Hierarki Klaster (GBW-AHK) dan Regional Credibility Merging (RCM). Metode GBW-AHK digunakan untuk mengoptimalkan penentuan adaptif threshold untuk mereduksi region watershed yang over-segmentasi. Kemudian RCM melakukan penggabungan region sisa hasil reduksi berdasarkan dua syarat penggabungan hingga dihasilkan dua wilayah utama segmentasi, yakni ekstraksi objek ikan tuna dan background. Hasil eksperimen pada 25 citra ikan tuna membuktikan bahwa metode usulan berhasil melakukan segmentasi dengan nilai rata-rata relative foreground area error (RAE) 4,77%, misclassification error (ME) 0,63%, modified Hausdorff distance (MHD) 0,20, dan waktu eksekusi 11,61 detik. Kata Kunci: watershed, gradient-barrier, analisis hierarki klaster, regional credibility merging, segmentasi tuna
Pengaruh Part of Speech Tagging Berbasis Aturan dan Distribusi Probabilitas Maximum Entropy untuk Bahasa Jawa Krama Hafiz Ridha Pramudita; Ema Utami; Armadyah Amborowati
Jurnal Buana Informatika Vol. 7 No. 4 (2016): Jurnal Buana Informatika Volume 7 Nomor 4 Oktober 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i4.764

Abstract

Abstract. Javanese language is one of the local languages in Indonesia, which is used by most of the population of Indonesia. The language has complex grammar to embrace the values of decency that is determined by the use of words containing courtesy known as Raos Alus. Every word in the Javanese belongs to a certain part of speech like what happens to other languages. Part of Speech (POS) tagging is a process to set syntactic category in a word such as nouns, verbs, or adjectives to every word in the document or text. This study examined the POS Tagging with Maximum Entropy and Rule Based for Javanese Krama—Higher Javanese--by using the Open NLP library to measure the maximum entropy. The results obtained are Maximum Entropy and Rule Based can be used for POS Tagging on Javanese Krama with the highest accuracy of 97.67%.Keywords: POS Tagging, NLP, Maximum Entropy, Rule Based, Javanese KramaLanguageAbstrak. Bahasa Jawa merupakan salah satu bahasa daerah di Indonesia yang dipakai oleh sebagian besar penduduk Indonesia. Bahasa Jawa memiliki tata bahasa yang kompleks karena menganut nilai-nilai kesopanan yang ditentukan berdasarkan penggunaan dengan kata-kata yang mengandung raos alus (rasa sopan). Setiap kata dalam Bahasa Jawa memiliki jenis kata atau part of speech tertentu seperti halnya dengan bahasa-bahasa lain. POS tagging merupakah bagian penting dari cakupan bidang ilmu Natural Languange Processing (NLP). Penelitian ini menguji POS Tagging dengan Berbasis Aturan dan distribusi probabilitas Maximum Entropy pada Bahasa Jawa Krama menggunakan library OpenNLP untuk mengukur maximum entropy. Hasil yang diperoleh adalah Maximum Entropy dan Rule Based dapat digunakan untuk POS Tagging pada Bahasa Jawa Krama dengan akurasi tertinggi 97,67%.Kata Kunci: POS Tagging, NLP, Maximum Entropy, Rule Based, Bahasa Jawa Krama
Model Pengamanan End-to-End pada M-Banking Berbasis Algoritma Kurva Hyper Elliptic Putra Wanda
Jurnal Buana Informatika Vol. 7 No. 4 (2016): Jurnal Buana Informatika Volume 7 Nomor 4 Oktober 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i4.765

Abstract

Abstract. Currently, banking transactions using mobile banking has grown rapidly. The increasing the number of mobile application users becomes one of the main factors. Several approaches have been developed to improve the transaction security. Problems of message security still requires a solution to achieve computing speed and leverage security level. In this paper, we propose a security algorithms used to improve the mobile banking security with hyperelliptic curve algorithm. It will create a safe and an efficient transactions while message will be sent via public internet. Hyperelliptic curve algorithm will run a processes for authentication and encryption. it will produce fast computation and has good security level. This research produced little computing time on m-banking application while it run on Android. Hyperelliptic curve algorithm use a smaller key to achieve a good security level at m-banking application.Keywords: hyperelliptic curve algorithm, security, mobile banking.Abstrak. Saat ini, transaksi perbankan baik di dalam dan di luar menggunakan Mobile Banking semakin pesat, meningkatnya jumlah pengguna aplikasi mobile menjadi salah satu faktor utamanya. Beberapa pendekatan telah dikembangkan untuk meningkatkan keamanan transaksi pesan selama komunikasi. Masalah yang masih memerlukan solusi adalah kecepatan komputasi dan tingkat keamanan pada algoritma pengamanan yang digunakan. Penelitian ini dilakukan untuk meningkatkan keamanan pesan mobile banking dengan memanfaatkan algoritma kurva hyper elliptic. Hal ini dilakukan untuk mewujudkan transaksi yang aman dan efisien dengan penerapan metode kriptografi pada pesan. Dengan menggunakan algoritma kurva hyper elliptic maka proses autentikasi dan enkripsi pesan bisa dilakukan dengan cepat dan memiliki level keamanan yang tinggi. Penelitian ini menghasilkan waktu komputasi yang cukup cepat pada aplikasi m-banking berbasis Android. Hal ini karena, algoritma kurva hyper elliptic menggunakan panjang kunci yang lebih kecil untuk mencapai level keamanan yang baik pada aplikasi m-banking. Kata Kunci: algoritma kurva hyper elliptic, keamanan, mobile banking.
Migrasi dan Optimalisasi Database Sistem Informasi Manajemen Universitas Cokroaminoto Palopo Nahrun Hartono; Ema Utami; Armadyah Amborowati
Jurnal Buana Informatika Vol. 7 No. 4 (2016): Jurnal Buana Informatika Volume 7 Nomor 4 Oktober 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i4.766

Abstract

Abstract. Information Management System of Cokroaminoto Palopo University (SIMUNCP) is a web application implemented on a Local Area Network (LAN). SIMUNCP uses MySQL as its database. The data is moved from the old database as a source to postgreeSQL as a target by migration. The migration is done because of lack of features on the old database that uses MySQL could not meet the needs of the organization. Before the migration, the first process is performed to evaluate the existing errors in the old database and the evaluation results are then used as a reference to design the new database. After the data migration is done the next process is measuring the quality of data on the new database. The quality of the data measured is an aspect of accuracy and nonduplicate aspect. Once that is done the next is to do is optimizing the query, Optimized query is a query that exists in the source code of application SIMUNCP.Keywords: Migration, Database, Optimization Abstrak. Sistem Informasi Manajemen Univeritas Cokroaminoto Palopo (SIMUNCP) merupakan aplikasi web yang diimplementasikan pada jaringan Local Area Network (LAN). SIMUNCP menggunakan MySQL sebagai basis datanya. Migrasi dilakukan dengan memindahkan data dari basis data lama yang menjadi sumber ke basis data postgreSQL sebagai basis data baru menjadi, hal ini dikarenakan minimnya fitur pada basis data lama yang menggunakan MySQL sehingga tidak mampu memenuhi kebutuhan organisasi. Sebelum dilakukan migrasi, yang dilakukan adalah mengevaluasi kesalahankesalahan yang ada pada basis data lama dan hasil evaluasi tersebut kemudian dijadikan acuan untuk merancang basis data baru. setelah migrasi data dilakukan selanjutnya adalah melakukan pengukuran kualitas data pada basis data baru, kualitas data yang diukur adalah aspek akurasi dan aspek nonduplikat, setelah itu dilakukan optimasi query, dimana query-query yang dioptimasi adalah query-query yang ada pada source code aplikasi SIMUNCP. Kata Kunci: Migrasi, Basis data, Optimalisasi.

Filter by Year

2010 2025


Filter By Issues
All Issue Vol. 16 No. 01 (2025): Jurnal Buana Informatika, Volume 16, Nomor 01, April 2025 Vol. 16 No. 2 (2025): Jurnal Buana Informatika, Volume 16, Nomor 02, Oktober 2025 Vol. 15 No. 01 (2024): Jurnal Buana Informatika, Volume 15, Nomor 01, April 2024 Vol. 15 No. 2 (2024): Jurnal Buana Informatika, Volume 15, Nomor 02, Oktober 2024 Vol. 14 No. 02 (2023): Jurnal Buana Informatika, Volume 14, Nomor 2, Oktober 2023 Vol. 14 No. 01 (2023): Jurnal Buana Informatika, Volume 14, Nomor 1, April 2023 Vol. 13 No. 02 (2022): Jurnal Buana Informatika, Volume 13, Nomor 2, Oktober 2022 Vol. 13 No. 1 (2022): Jurnal Buana Informatika, Volume 13, Nomor 1, April 2022 Vol 12, No 2 (2021): Jurnal Buana Informatika Volume 12 - Nomor 2 - Oktober 2021 Vol. 12 No. 2 (2021): Jurnal Buana Informatika Volume 12 - Nomor 2 - Oktober 2021 Vol 12, No 1 (2021): Jurnal Buana Informatika Volume 12 - Nomor 1 - April 2021 Vol. 12 No. 1 (2021): Jurnal Buana Informatika Volume 12 - Nomor 1 - April 2021 Vol. 11 No. 2: Vol 11, No 2 (2020): Jurnal Buana Informatika Volume 11 - Nomor 2 - Okober 2020 Vol 11, No 2: Vol 11, No 2 (2020): Jurnal Buana Informatika Volume 11 - Nomor 2 - Okober 2020 Vol 11, No 1 (2020): Jurnal Buana Informatika Volume 11 - Nomor 1 - April 2020 Vol. 11 No. 1 (2020): Jurnal Buana Informatika Volume 11 - Nomor 1 - April 2020 Vol. 10 No. 2 (2019): Jurnal Buana Informatika Volume 10 Nomor 2 Oktober 2019 Vol 10, No 2 (2019): Jurnal Buana Informatika Volume 10 Nomor 2 Oktober 2019 Vol 10, No 1 (2019): Jurnal Buana Informatika Volume 10 Nomor 1 April 2019 Vol. 10 No. 1 (2019): Jurnal Buana Informatika Volume 10 Nomor 1 April 2019 Vol 9, No 2 (2018): Jurnal Buana Informatika Volume 9 Nomor 2 Oktober 2018 Vol. 9 No. 2 (2018): Jurnal Buana Informatika Volume 9 Nomor 2 Oktober 2018 Vol. 9 No. 1 (2018): Jurnal Buana Informatika Volume 9 Nomor 1 April 2018 Vol 9, No 1 (2018): Jurnal Buana Informatika Volume 9 Nomor 1 April 2018 Vol. 8 No. 4 (2017): Jurnal Buana Informatika Volume 8 Nomor 4 Oktober 2017 Vol 8, No 4 (2017): Jurnal Buana Informatika Volume 8 Nomor 4 Oktober 2017 Vol 8, No 3 (2017): Jurnal Buana Informatika Volume 8 Nomor 3 Juli 2017 Vol. 8 No. 3 (2017): Jurnal Buana Informatika Volume 8 Nomor 3 Juli 2017 Vol. 8 No. 2 (2017): Jurnal Buana Informatika Volume 8 Nomor 2 April 2017 Vol 8, No 2 (2017): Jurnal Buana Informatika Volume 8 Nomor 2 April 2017 Vol. 8 No. 1 (2017): Jurnal Buana Informatika Volume 8 Nomor 1 Januari 2017 Vol 8, No 1 (2017): Jurnal Buana Informatika Volume 8 Nomor 1 Januari 2017 Vol 7, No 4 (2016): Jurnal Buana Informatika Volume 7 Nomor 4 Oktober 2016 Vol. 7 No. 4 (2016): Jurnal Buana Informatika Volume 7 Nomor 4 Oktober 2016 Vol 7, No 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016 Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016 Vol 7, No 2 (2016): Jurnal Buana Informatika Volume 7 Nomor 2 April 2016 Vol. 7 No. 2 (2016): Jurnal Buana Informatika Volume 7 Nomor 2 April 2016 Vol 7, No 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016 Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016 Vol 6, No 4 (2015): Jurnal Buana Informatika Volume 6 Nomor 4 Oktober 2015 Vol 6, No 4 (2015): Jurnal Buana Informatika Volume 6 Nomor 4 Oktober 2015 Vol. 6 No. 4 (2015): Jurnal Buana Informatika Volume 6 Nomor 4 Oktober 2015 Vol. 6 No. 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015 Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015 Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015 Vol 6, No 2 (2015): Jurnal Buana Informatika Volume 6 Nomor 2 April 2015 Vol. 6 No. 2 (2015): Jurnal Buana Informatika Volume 6 Nomor 2 April 2015 Vol 6, No 2 (2015): Jurnal Buana Informatika Volume 6 Nomor 2 April 2015 Vol 6, No 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015 Vol 6, No 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015 Vol. 6 No. 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015 Vol. 5 No. 2 (2014): Jurnal Buana Informatika Volume 5 Nomor 2 Juli 2014 Vol 5, No 2 (2014): Jurnal Buana Informatika Volume 5 Nomor 2 Juli 2014 Vol 5, No 1 (2014): Jurnal Buana Informatika Volume 5 Nomor 1 Januari 2014 Vol. 5 No. 1 (2014): Jurnal Buana Informatika Volume 5 Nomor 1 Januari 2014 Vol 5, No 1 (2014): Jurnal Buana Informatika Volume 5 Nomor 1 Januari 2014 Vol 4, No 2 (2013): Jurnal Buana Informatika Volume 4 Nomor 2 Juli 2013 Vol 4, No 2 (2013): Jurnal Buana Informatika Volume 4 Nomor 2 Juli 2013 Vol. 4 No. 2 (2013): Jurnal Buana Informatika Volume 4 Nomor 2 Juli 2013 Vol. 4 No. 1 (2013): Jurnal Buana Informatika Volume 4 Nomor 1 Januari 2013 Vol 4, No 1 (2013): Jurnal Buana Informatika Volume 4 Nomor 1 Januari 2013 Vol 4, No 1 (2013): Jurnal Buana Informatika Volume 4 Nomor 1 Januari 2013 Vol 3, No 2 (2012): Jurnal Buana Informatika Volume 3 Nomor 2 Juli 2012 Vol 3, No 2 (2012): Jurnal Buana Informatika Volume 3 Nomor 2 Juli 2012 Vol. 3 No. 2 (2012): Jurnal Buana Informatika Volume 3 Nomor 2 Juli 2012 Vol 3, No 1 (2012): Jurnal Buana Informatika Volume 3 Nomor 1 Januari 2012 Vol. 3 No. 1 (2012): Jurnal Buana Informatika Volume 3 Nomor 1 Januari 2012 Vol 3, No 1 (2012): Jurnal Buana Informatika Volume 3 Nomor 1 Januari 2012 Vol. 2 No. 2 (2011): Jurnal Buana Informatika Volume 2 Nomor 2 Juli 2011 Vol 2, No 2 (2011): Jurnal Buana Informatika Volume 2 Nomor 2 Juli 2011 Vol 2, No 2 (2011): Jurnal Buana Informatika Volume 2 Nomor 2 Juli 2011 Vol 2, No 1 (2011): Jurnal Buana Informatika Volume 2 Nomor 1 Januari 2011 Vol 2, No 1 (2011): Jurnal Buana Informatika Volume 2 Nomor 1 Januari 2011 Vol. 2 No. 1 (2011): Jurnal Buana Informatika Volume 2 Nomor 1 Januari 2011 Vol 1, No 2 (2010): Jurnal Buana Informatika Volume 1 Nomor 2 Juli 2010 Vol. 1 No. 2 (2010): Jurnal Buana Informatika Volume 1 Nomor 2 Juli 2010 Vol 1, No 2 (2010): Jurnal Buana Informatika Volume 1 Nomor 2 Juli 2010 Jurnal Buana Informatika Volume 1 Nomor 1 Januari 2010 Jurnal Buana Informatika Volume 1 Nomor 1 Januari 2010 More Issue