Claim Missing Document
Check
Articles

Found 14 Documents
Search

Penerapan Scientific Approach melalui Model Problem Based Instruction dalam Rangka Meningkatkan Hasil Belajar Matematika Siswa Kelas 6 SDS IT Karakter Anak Shalih Haripamyu Haripamyu; Izzati Rahmi H.G; Monika Rianti Helmi; Ferra Yanuar; Hazmira Yozza; Yanita Yanita; Arrival Rince Putri; Admi Nazra; Jenizon Jenizon
Warta Pengabdian Andalas Vol 28 No 4 (2021)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jwa.28.4.482-488.2021

Abstract

The learning method is given to the 6th-grade students of elementary school of SDS IT Karakter Anak Shalih still emphasizes learning by a teacher's tutoring method. Students are less interested in listening to the explanation of the subjects in a more extended period. Students cannot adequately understand the lesson's concepts explained through this lecture method. This finding is also reflected in the mid-test scores of students who still get scores below passed minimal score. The purpose of this activity was to grow and build students' ability to think critically, learn actively, and communicate learning outcomes well. In particular, the purpose of this activity was to apply a scientific approach through a problem-based instruction model in Mathematics with a lesson on Circle shape for grade 6 students. This activity was carried out in 3 stages, namely the preparation stage, starting with socialization and willingness collaboration from the elementary school, contacting the teacher to arrange a schedule of activities, and preparing for the implementation. The second stage was implementing activities, namely experimental methods, lectures, demonstrations, and small group discussions. The final stage was evaluating activities and providing input for better results. The accompaniment activities need to be continued to assist teachers in improving student learning outcomes in Mathematics.
INTERPOLASI SPLIN KUBIK TERAPIT Visca Amelia S; Mahdhivan Syafwan; Arrival Rince Putri
Jurnal Matematika UNAND Vol 8, No 2 (2019)
Publisher : Jurusan Matematika FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmu.8.2.141-148.2019

Abstract

Dalam makalah ini dibahas penurunan interpolasi splin kubik untuk kasus syarat batas terapit dengan lebar selang sebarang. Interpolasi jenis ini digunakan untuk mengaproksimasi data dimana kemiringan di titik-titik ujung data diketahui. Dari hasil simulasi diperoleh hasil interpolasi yang cukup baik dalam mengaproksimasi kemulusan kurva dari data sebenarnya.Kata Kunci: Interpolasi Splin Kubik, Batas Terapit
DINAMIKA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN STRATEGI VAKSINASI NANDA MUTIA UTAMA; ARRIVAL RINCE PUTRI; MAHDHIVAN SYAFWAN
Jurnal Matematika UNAND Vol 9, No 4 (2020)
Publisher : Jurusan Matematika FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmu.9.4.357-365.2020

Abstract

Vaksinasi merupakan salah satu cara untuk mencegah sekaligus mengendalikan penyebaran penyakit menular. Penelitian ini membahas salah satu model penyebaran penyakit menular, yaitu model Susceptible Infected Recovered (SIR). Model SIR yang dibahas mempertimbangkan strategi vaksinasi, yaitu vaksinasi konstan dan vaksinasi berkala, yang diberikan kepada individu rentan terinfeksi penyakit. Kajian analitik dilakukan dengan menganalisis kestabilan model di sekitar titik ekuilibrium berdasarkan nilai eigen dari matriks Jacobian. Kestabilan model dikaitkan juga dengan parameter ambang batas, yaitu parameter yang menentukan apakah suatu populasi bebas atau terinfeksi dari penyakit. Simulasi numerik dilakukan untuk mengkonfirmasi hasil analitik dengan menggunakan parameter dari kasus penyakit Tuberkulosis (TBC) di Provinsi Sumatera Barat tahun 2018. Hasil analitik maupun numerik memperlihatkan bahwa pemberian stategi vaksinasi efektif sebagai pencegahan dan pengendalian penyebaran penyakit, sehingga dapat mengurangi jumlah individu yang terinfeksi.Kata Kunci: Model SIR, Vaksinasi, Kestabilan, Parameter Ambang Batas, Simulasi Numerik
SOLUSI ANALITIK DAN NUMERIK SUATU PERSAMAAN GELOMBANG SATU DIMENSI AGUNG ALVIAN NOOR; ARRIVAL RINCE PUTRI; MAHDHIVAN SYAFWAN
Jurnal Matematika UNAND Vol 8, No 4 (2019)
Publisher : Jurusan Matematika FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmu.8.4.1-8.2019

Abstract

Persamaan gelombang merupakan salah satu persamaan diferensial yang merepresentasikan fenomena fisis yang terjadi dalam kehidupan sehari-hari. Pada penelitian ini dibahas persamaan gelombang homogen satu dimensi. Solusi analitik dari persamaan gelombang tersebut ditentukan dengan metoda karakteristik. Solusi analitik dikonfirmasi dengan solusi numerik yang menggunakan metode beda hingga beda pusat dengan skema eksplisit. Hasil yang diperoleh memperlihatkan bahwa solusi analitik mempunyai pola yang sama dengan solusi numerik.Kata Kunci: Persamaan Gelombang, Solusi Analitik, Metode Karakteristik, Solusi Numerik, Metode Beda Hingga
ANALISIS KESTABILAN MODEL P REY − P REDAT OR HOLLING TIPE III HAZISYAH HAZISYAH; ARRIVAL RINCE PUTRI; SUSILA BAHRI
Jurnal Matematika UNAND Vol 10, No 1 (2021)
Publisher : Jurusan Matematika FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmu.10.1.29-37.2021

Abstract

Model matematika yang merepresentasikan interaksi antara prey (mangsa) dan prey (pemangsa) dikenal dengan model prey-predator. Penelitian ini membahas dinamika model prey-predator yang memuat fungsi respon Holling tipe III, dimana tipe predator yang mencari mangsa lain ketika mangsa yang dimakannya mulai berkurang. Dinamika model diamati dengan menganalisis kestabilan sistem, yaitu kestabilan sistem di sekitar titik ekuilibriumnya. Secara analitik terdapat tiga titik ekuilibrium dari model. Terdapat satu titik yang tidak stabil dan dua titik yang kestabilannya tergantung pada nilai parameter yang diberikan. Hasil simulasi numerik menunjukkan sifat yang sama untuk tiga titik keseimbangan tersebut dengan parameter yang digunakan pada penelitian ini.Kata Kunci: Model Prey-predator, Holling tipe III, Titik ekuilibrium.
Peningkatan Kemampuan Literasi Numerasi Siswa SMP Swasta Islam Terpadu Karakter Anak Shalih Kota Padang Haripamyu Haripamyu; Noverina Alfiany; Arrival Rince Putri; Susila Bahri; Monika Rianti Helmi
Warta Pengabdian Andalas Vol 30 No 1 (2023)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jwa.30.1.116-123.2023

Abstract

Numerical literacy is an ability that requires an understanding of basic mathematical concepts and skills. Private Integrated Islamic Junior High School (SMPS IT) "Karakter Anak Shalih" (KAS) has not implemented the Minimum Competency Assessment (MCA) of the 2022/2023 school year, which will be held in 2023. The preparations for MCA implementation should be started in 2022. One of the problems schools encounter is how to prepare the students to conceive numeracy literacy for MCA. The Community Service Activities (CSA) of the Department of Mathematics and Data Science of Universitas Andalas aims to accompany teachers and students to increase students' understanding of basic concepts and skills in mathematics, providing socialization and assistance to teachers and students regarding numeracy literacy knowledge, and supporting schools to improve learning process services. Those activities were carried out in three main stages, namely, the preparation stage, the implementation stage, and the activity evaluation stage. The results of this CSA activity were evaluated by observing the students' understanding of mathematical concepts, numeracy literacy, and improving services that support the learning process. Based on the CSA activities, it was concluded that mentoring activities must be continued to assist schools in dealing with MCA.
Stability Analysis and Numerical Simulation of the COVID-19 SISiR Model : Bahasa Indonesia Arival Rince Putri; Berliani Nasran; Budi Rudianto
Jurnal Matematika, Statistika dan Komputasi Vol. 20 No. 1 (2023): SEPTEMBER, 2023
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v20i1.27747

Abstract

This research discusses the SISiR model (Susceptible Infected Sick Recovered) considering individual immune parameters and lockdown parameters. The consideration of these parameters aims to determine whether immunity and lockdown have an impact on the spread of COVID-19. The model's stability is analyzed around the equilibrium point to understand the dynamics of COVID-19 spread in a population. Furthermore, the parameter R0 is determined to indicate whether COVID-19 disappears or remains in the population. From numerical simulations with spesific parameter values, it is concluded that COVID-19 continues to spread in the population with an R0 = of 4.4486. The addition and reduction of immune and lockdown parameters affect the spread of COVID-19.
VARIASI POLA SIMETRI ROTASI 90 DERAJAT DARI SIMULASI SISTEM DINAMIK DENGAN TIGA TES KONVERGENSI Kintan Febri Cania; Mahdhivan Syafwan; Arrival Rince Putri
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 4 No. 2 (2023): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v4i2.397

Abstract

This article reviews the  symmetry pattern which has  rotational symmetry and translational symmetry along the -axis and -axis. The  symmetry pattern is generated through the implementation of Matlab application using discrete dynamical system simulation, after analysing the requirements and determining the appropriate dynamical function. In this context, each point on the plane serves as the starting point in the iteration of the dynamical system. The colour assigned to each point is determined by the number of iterations performed. The generation of the  symmetry pattern involves three convergence tests, namely the Euclidean Test, the Fractional Distance Test, and the Maximum Distance with Weighted test. Through a variety of dynamic function parameter combinations, a more visually appealing and diverse range of  symmetry patterns is obtained.
Peningkatan Minat dan Kemampuan Santri Pondok Pesantren Al Ashry di Bidang Matematika Melalui Pendekatan Small Group Discussion Izzati Rahmi HG; Admi Nazra; Hazmira Yozza; Ferra Yanuar; Budi Rudianto; Susila Bahri; Narwen Narwen; Maiyastri Maiyastri; Haripamyu Haripamyu; Riri Lestari; Yudiantri Asdi; Efendi Efendi; Dodi Devianto; Zulakmal Zulakmal; Ahmad Iqbal Baqi; Arrival Rince Putri; Radhiatul Husna; Nova Noliza Bakar; Mawanda Almuhayar; Ikhlas Pratama Sandi
Warta Pengabdian Andalas Vol 30 No 4 (2023)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jwa.30.4.715-721.2023

Abstract

Mathematics is a field of study needed in various aspects of life. Accordingly, mathematics should always be considered a compulsory subject at every level of education, including in Islamic Boarding Schools. The fact shows that implementing mathematics learning in several schools needs to run optimally, especially in schools lacking teachers and limited educational facilities and infrastructure, such as The Al Ashry Islamic Boarding School, at the secondary level in Padang. This condition indicates that it is necessary to assist other parties to help students in their mathematics learning process. For this reason, the community service team of The Mathematics and Science Data Department of Andalas University conducted an intensive mathematics tutoring activity for The Al-Asyri Boarding School students. The activity carried out during September-December 2022 combined the lecture and the small group discussion approach. From the evaluation delivered by the students at the end of the activity, it can be concluded that this activity increased students’ interest, motivation, efficacy, and understanding of mathematics subject.
ANALISIS KESTABILAN MODEL MATEMATIKA AKSI DEMONSTRASI MAHASISWA DI SUMATERA BARAT Yolanda Putri; ARRIVAL RINCE PUTRI; RIRI LESTARI
Jurnal Matematika UNAND Vol 12, No 3 (2023)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.12.3.213-221.2023

Abstract

Aksi demonstrasi atau unjuk rasa merupakan salah satu fenomena di dunia nyata yang sering terjadi dan melibatkan berbagai kalangan, baik mahasiswa, buruh, maupun anggota suatu organisasi. Khususnya di Sumatera Barat, pada tanggal 23 dan 25 September 2019 telah terjadi demonstrasi polemik RUU di gedung DPRD Sumatera Barat yang melibatkan ribuan mahasiswa, aparat kepolisian, dan anggota DPRD Tingkat I.Pada penelitian ini dibahas model matematika aksi demonstrasi mahasiswa. Model ini merujuk pada model Richardson. Model dianalisis kestabilannya melalui analisis kestabilan titik ekuilibrium. Kestabilan titik ekuilibrium ditentukan dari nilai eigen matriks koefisien yang diperoleh. Hasil analitik dikonfirmasi dengan hasil numerik. Parameter model yang digunakan pada simulasi numerik diperoleh dari data yang diolah berdasarkan kuisioner yang diambil dari responden. Berdasarkan hasil yang diperoleh dapat disimpulkan bahwa aksi demonstrasi yang terjadi berlangsung anarkis. Hal ini sesuai dengan kenyataan yang terjadi di lapangan bahwa aksi demonstrasi yang terjadi pada kasus demonstrasi polemik RUU di gedung DPRD Sumatera Barat tanggal 25 September 2019 merupakan demonstrasi anarkis.