Claim Missing Document
Check
Articles

Found 13 Documents
Search

The effect of Phyllanthus niruri and Catharanthus roseus on Macrophage Polarization in Breast Cancer Mice Model: The Effect of P. niruri and C. roseus in Breast Cancer Mice Model Sakti, Sefihara Paramitha; Sari, Fikriya Novita; Rachmawati, Farida; Widyarti, Sri; Rahayu, Sri; Soewondo, Aris; Jatmiko, Yoga Dwi; Rifa'i, Muhaimin
Journal of Tropical Life Science Vol. 14 No. 1 (2024)
Publisher : Journal of Tropical Life Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11594/jtls.14.01.03

Abstract

Cancer death cases have increased yearly, and there are estimated to be 21.6 million cancer cases in 2030. Studies of herbal compounds for cancer treatment alternatives are essential because cancer treatment is relatively expensive and has adverse effects. Phyllanthus niruri (Pn) and Catharanthus roseus (Cr) are plants that are known as herbal medicines. Combining the two plants is expected to prevent and enhance the immune system in breast cancer cases. This study aims to analyze the anti-cancer and immunomodulatory effects of P. niruri and C. roseus extract (PCE) in modulating macrophage polarization in breast cancer mice. Experimental animals are divided into six groups and there is healthy control (normal mice), cancer (DMBA-induced mice), cancer mice with cisplatin administration, cancer mice with PCE administration with three different doses, including dose 1 (500 mg/kg Pn + 15 mg/kg Cr), dose 2 (1000 mg/kg Pn + 75 mg/kg Cr), and dose 3 (2000 mg/kg Pn + 375 mg/kg Cr). The mice were injected with DMBA once a week for six weeks to induce cancer in mice. The breast cancer mice model was administered with PCE orally for 14 days. The expression of CD11b+IL-10+ and CD11b+IFN-γ+ demonstrated macrophage polarization. The results showed that breast cancer induction using DMBA increased the level of IL-10 and decreased the level of IFN-γ significantly compared to the normal group (p < 0.05). In specific doses, administration of PCE could reduce IL-10 levels and increase the level of IFN-γ significantly (p < 0.05). PCE can modulate the polarization of macrophages by suppressing the M2-like macrophage and increasing the M1-like macrophage. The ability of PCE to modulate macrophage polarization indicates that the combination of P. niruri and C. roseus has activity as an anti-cancer.
Antioxidant Activity of Baby Java Citrus Peel Extract Promotes Lung Tissue Repair in Mice Challenged by Lipopolysaccharides: Antioxidant Activity of BJE Promotes Lung Tissue Repair Rachmawati, Farida; Sari, Fikriya Novita; Sakti, Sefihara Paramitha; Sakti, Muhammad Wisam Wira; Rahayu, Sri; Soewondo, Aris; Rifa'i, Muhaimin
Journal of Tropical Life Science Vol. 14 No. 2 (2024)
Publisher : Journal of Tropical Life Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11594/jtls.14.02.03

Abstract

Acute lung injury tends to be induced by infection or sepsis that disrupt alveolar and vascular permeability, neutrophil influx, and edema. Those impairments are worsened by the increase of oxidative stress along with hyperinflammation response. Oxidative stress in lung tissue could be indicated by malondialdehyde (MDA) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. This research aimed to evaluate the efficacy of Baby Java citrus peel extract (BJE) in suppressing oxidative stress and preventing lung injury in lipopolysaccharides (LPS)-induced mice. Twenty-five male BALB/c mice were divided into five groups consisting of untreated (N), LPS (A), and LPS-induced followed by treatment using BJE at various doses: 75 mg/kg BW (BJE-1), 105 mg/kg BW (BJE-2), and 150 mg/kg BW (BJE-3). Lungs were isolated for histopathological analysis also detection of MDA and Nrf2 using flow cytometry. BJE at the dose of 105 mg/kg BW could inhibit the alteration of lung histology following LPS challenge including alveolar and interstitial neutrophil infiltration, proteinaceous debris, and septal thickening. The same dose also showed good potency in suppressing MDA and Nrf2 levels as oxidative stress indicators. Our findings demonstrated protective effects of Baby Java citrus peel in acute lung injury and oxidative stress prevention after LPS exposure.
Employing SecA Recombinant Protein to Generate Polyclonal Antibodies for the Rapid Identification of Phytoplasma Fatinah, Arik Arubil; Rifa'i, Muhaimin; Arumingtyas, Estri Laras; Widyarti, Sri
Makara Journal of Science
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Phytoplasma, a plant pathogen that threatens plant health, can induce diseases such as yellow wilt, virescence, phyllody, and witches’ broom. Although early detection methods using polyclonal and monoclonal antibodies have been developed, synthetic peptides offer advantages such as higher titers, predictable antigenic characteristics and superior sensitivity and specificity. Epitope mapping plays a key role in designing peptide antigens and includes gene synthesis, transformation, expression assessment, large-scale production, and purification. A study using New Zealand male White rabbits was conducted to generate antibodies against phytoplasma. The SecA (395–470) sequence, obtained from the preprotein translocase meets the criteria of being non-homologous, nonallergic, and antigenic. The three-dimensional structure of SecA (395–470) has a sequential similarity of 77–97% with certain phytoplasma types, and the protein purity exceeds 90%. The production of polyclonal antibodies was successful, achieving titers greater than 1:512,000. The SWISS model was used to predict the 3D structure of SecA in phytoplasma species, revealing structural homology with other phytoplasma species. The recombinant protein antigen SecA was able to induce high-titer antibody formation (>1:512.000). The developed lateral flow immunoassay (LFA) detects phytoplasma in plants using purified and conjugated antibodies. The peptide design, derived from Aster yellows witches-broom (SrI), effectively detects phytoplasma from various groups, especially Cactus witches’ broom phytoplasma (SrII-C) and Peanut witches’ broom phytoplasma (SrII-A). The SrI group phytoplasma was chosen as a reference sequence due to its` ability to infect plants across the broadest host range. LFIA was tested on samples from both phytoplasma-infected and healthy plants using nested PCR. The SecA sequence was successfully produced and used as an immunogen candidate against phytoplasmas.