Claim Missing Document
Check
Articles

Found 6 Documents
Search

Analytical Method Validation of Thorium in Ore Sample Using UV-Vis Spectrophotometer Indryati, Suci; Hidayat, Amalia Ekaputri; Pratama, Afiq Azfar; Laksmana, Roza Indra; Widana, Kurnia Setiawan; Ramlan, Muhammad Alif; Purwanti, Tri; Prassanti, Riesna; Anggraini, Mutia; Rommy, Rommy
EKSPLORIUM Vol 44, No 2 (2023): November 2023
Publisher : Badan Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2023.6965

Abstract

Monazite contains several rare earth elements (REE) along with radioactive elements, i.e., thorium (Th) and uranium (U). Thorium content in monazite is several times higher than uranium. Monazite contains around 12% thorium oxide, but the thorium content in this mineral varies depending on location. To determine the thorium content in monazite, an appropriate and validated analytical method is needed so that the reliability of the test results can be trusted. Apart from that, method validation is one of the clauses in SNI ISO/IEC 17025:2017 that must be fulfilled by the laboratory to be certified and produce reliable data. This research aims to validate analytical methods for non-standard and modified methods that are likely to be used outside the scope. In this research, the method used to digest and analyze thorium in mineral samples refers to the ASTM E2941-14 method with several modifications. Therefore, the analysis method needs to be validated. Validation of the analytical method is carried out by testing several parameters such as linearity and working range tests, accuracy, precision (repeatability), Limit of Detection (LOD), and Limit of Quantitation (LOQ). The results of linearity, accuracy, and repeatability tests that meet the acceptance requirements can be used as a method of validation evaluation. The results of the method validation parameter test met the acceptance requirements, with the linearity test showing a coefficient of determination (R2) of 0.997, the accuracy test showing % a recovery value of 106.22%, and the precision (repeatability) test showing %RSD of 3.76% with LOD value is 0.650 mg/L, and LOQ is 0.724 mg/L. Based on the results of these parameter tests, the method for analyzing thorium in mineral samples was validated.
Validation of The Gravimetry Method for Determining Rare Earth Elements Oxides Pratama, Afiq Azfar; Hidayat, Amalia Ekaputri; Rommy, Rommy; Indryati, Suci; Laksmana, Roza Indra; Trinopiawan, Kurnia; Purwanti, Tri; Widana, Kurnia Setiawan; Putra, Aditya Widian; Anggraini, Mutia; Nasrullah, Dzaki Hasan
EKSPLORIUM Vol 45, No 1 (2024): May 2024
Publisher : Badan Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2024.6972

Abstract

The demand for minerals to meet technological developments is increasing, including minerals that contain rare earth elements (REE). The levels of REE in solids can be determined using conventional analysis methods (gravimetry) and instruments. Even though the instrument method provides more accurate results with a small amount of analyte, the cost is higher compared to the gravimetric method, which requires more analyte and provides good results. Therefore, the gravimetric method is a solution for areas with limited instruments and budgets. The study aims to validate the gravimetric method for determining REE oxides levels, evaluate its precision and accuracy, and assess its feasibility of use. In this study, two methods were used for REE analysis: the ASTM E2941-14 method with sample weight modification and the addition of acid to increase REE oxides recovery and a precipitation method using oxalic acid. The validation stages include sample dissolution, precipitation, filtration, and ash-making. The research results show that the RSD value is 0.3154, which is smaller than 2/3 of Horwitz's CV, namely 4.1727, which means it meets the precision acceptance requirements of ISO/IEC 17025:2017. The REE oxides recovery value, which indicates accuracy, also increased to 97.74%. Therefore, the gravimetric method can be used as an alternative for determining REE oxides levels.
Efektivitas Komposisi Arang Aktif Campuran Kulit Pisang Kepok (Musa Acuminata) Dan Zeolit Untuk Mengurangi Potensi Pencemaran Limbah Naftalena Sugiharto, Untung; Laksmana, Roza Indra; Setiawan, Risdiyana; Fatika, Siti; Febrian, Fio; Pitaloka, Adinda
Prosiding Semnastek PROSIDING SEMNASTEK 2025
Publisher : Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Limbah yang dihasilkan dari kegiatan penelitian di laboratorium memiliki karakteristik yang beragam, meskipun volumenya relatif kecil. Salah satu jenis limbah yang umum ditemukan adalah limbah yang mengandung poliaromatik hidrokarbon (PAH), seperti naftalena, yang bersifat toksik dan persisten di lingkungan sehingga memerlukan metode pengolahan yang efektif. Penyisihan naftalena dari limbah cair dapat dilakukan melalui berbagai proses fisika, kimia, maupun kombinasi keduanya, dengan metode adsorpsi sebagai salah satu teknik yang banyak diterapkan karena efisiensi dan kemudahannya. Penelitian ini bertujuan mengevaluasi efektivitas campuran arang aktif kulit pisang kepok dan zeolit dalam menurunkan konsentrasi naftalena pada limbah cair laboratorium, serta menganalisis karakteristik kinetika dan isoterm adsorpsi dari campuran tersebut. Selain itu, penelitian ini membandingkan kinerja adsorpsi campuran dengan masing-masing bahan secara terpisah. Arang aktif kulit pisang kepok dan zeolit digunakan sebagai adsorben alami, dengan analisis daya serap untuk menentukan efisiensi penyisihan naftalena. Hasil penelitian menunjukkan bahwa kombinasi arang aktif kulit pisang kepok dan zeolit dengan rasio 1:3 mampu mencapai efisiensi adsorpsi sebesar 99,051% dalam waktu 1 jam pada suhu 60°C. Temuan ini menunjukkan bahwa pencampuran kedua bahan tersebut menghasilkan sinergi dalam mekanisme adsorpsi, yang ditunjukkan oleh peningkatan luas permukaan dan efektivitas interaksi antara adsorben dan naftalena dalam larutan. Dengan demikian, kombinasi arang aktif kulit pisang kepok dan zeolit berpotensi sebagai material adsorben yang efektif untuk pengolahan limbah cair laboratorium yang mengandung naftalena.
Efisiensi Penurunan Kandungan Uranium dalam Limbah Cair Pengolahan Monasit Menggunakan Resin Penukar Kation Tulsion T-40 Na Walayudara, Inda Robayani; Laksmana, Roza Indra; Marisi, Dani Poltak; Amalia, Septyana Nur
EKSPLORIUM Vol. 40 No. 2 (2019): NOVEMBER 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.2.5627

Abstract

Waste-water is one of the production process that contains several dangerous mixtures or chemical compositions. One of them is waste-water from monazite processing which is containing radioactive element like uranium (U). Waste-water with radioactive content, mainly uranium, became a hazardeous content if it is released to the environment because of its active nuclide content that effect the environment and community health. Therefore, it is necessary to treat waste-water from monasite processing. The method used is ion exchange process with a cation resin, namely Tulsion T-40 Na, which can reduce uranium content and other cations in waste-water at low concentration. Ion exchanging is conducted through stirring process with resin weight and contact time variations. Measurements on uranium content are carried out using the UV-Vis Spectrophotometer, while measurements on pH and TDS values in waste-water are conducted to determine the characteristics of the waste. The results showed that optimum condition of the ion exchange process at 1.5 g resin weight with 300 minutes contact time is resulting a reduction on uranium content as much as 83.40 %.
Validation of The Gravimetry Method for Determining Rare Earth Elements Oxides Pratama, Afiq Azfar; Hidayat, Amalia Ekaputri; Rommy; Indryati, Suci; Laksmana, Roza Indra; Trinopiawan, Kurnia; Purwanti, Tri; Widana, Kurnia Setiawan; Putra, Aditya Widian; Anggraini, Mutia; Nasrullah, Dzaki Hasan
EKSPLORIUM Vol. 45 No. 1 (2024): MAY 2024
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2024.6972

Abstract

The demand for minerals to meet technological developments is increasing, including minerals that contain rare earth elements (REE). The levels of REE in solids can be determined using conventional analysis methods (gravimetry) and instruments. Even though the instrument method provides more accurate results with a small amount of analyte, the cost is higher compared to the gravimetric method, which requires more analyte and provides good results. Therefore, the gravimetric method is a solution for areas with limited instruments and budgets. The study aims to validate the gravimetric method for determining REE oxides levels, evaluate its precision and accuracy, and assess its feasibility of use. In this study, two methods were used for REE analysis: the ASTM E2941-14 method with sample weight modification and the addition of acid to increase REE oxides recovery and a precipitation method using oxalic acid. The validation stages include sample dissolution, precipitation, filtration, and ash-making. The research results show that the RSD value is 0.3154, which is smaller than 2/3 of Horwitz's CV, namely 4.1727, which means it meets the precision acceptance requirements of ISO/IEC 17025:2017. The REE oxides recovery value, which indicates accuracy, also increased to 97.74%. Therefore, the gravimetric method can be used as an alternative for determining REE oxides levels.
Adsorption of Uranium onto Delaminated Amino Talc-Like Clay Saputra, Dwi Luhur Ibnu; Purwaningsih, Henny; Farid, Muhammad; Basuki, Triyono; Nakashima, Satoru; Rachmadetin, Jaka; Laksmana, Roza Indra; Sihotang, Juan Carlos; Noerpitasari, Erlina
EKSPLORIUM Vol. 46 No. 1 (2025): MAY 2025
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2025.12136

Abstract

Uranium-containing waste is generated as a by-product of nuclear power plants, radioisotope production, nuclear fuel fabrication, and mineral processing. A radioactive waste treatment plant treats radioactive liquid waste using various methods, including evaporator technology, ion exchange resins, and adsorbents. Various adsorbents have been investigated for the removal of uranium from aqueous solutions. Negatively charged adsorbents, such as natural clay, biomass-based adsorbents, and polymers, have been utilized for uranium adsorption. Previous research on uranium adsorption by amino clay, which has a positively charged surface, was still very limited compared to other adsorbents. In the present study, the application of Delaminated Amino talc-like Clay (DAC) for removing uranium from aqueous solutions was examined. DAC with amino propyl on the tetrahedral sheet surface is easily protonated to form a positively charged R-NH3 that may influence its interaction with uranium. The speciation and reaction kinetic order were studied in aqueous solution with pH and contact time as the variables. The adsorption of uranium onto DAC, which is likely due to physicochemical interactions and ion trapping, was evaluated. The maximum removal efficiency (84.5%) and adsorption capacity (113.06 mg/g) were achieved at pH 4 after approximately 60 minutes. The uranium adsorption capacity is low at pH 2 and 3 (10%), which is due to the repulsive interaction between the positive surface charge of DAC and (UO2)2+ as the dominant uranium species. Uranium adsorption capacity is high at pH 4 and 5, because the predominant species of uranium, such as (UO2)2+ and [(UO2)2(OH)2]2+, were probably adsorbed by DAC through chemisorption with R-NH2. The adsorption of uranium on the DAC was found to follow the pseudo-second order kinetic model.