This Author published in this journals
All Journal Jurnal Informatika Perspektif : Jurnal Ekonomi dan Manajemen Universitas Bina Sarana Informatika Jurnal Teknik Komputer AMIK BSI Paradigma Jurnal Pilar Nusa Mandiri Techno Nusa Mandiri : Journal of Computing and Information Technology JURNAL TEKNOLOGI DAN OPEN SOURCE Jurnal Riset Informatika Journal of Information System, Applied, Management, Accounting and Research Jurnal Informatika Kaputama (JIK) JURSIMA (Jurnal Sistem Informasi dan Manajemen) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Community Development Journal: Jurnal Pengabdian Masyarakat JPM: JURNAL PENGABDIAN MASYARAKAT Jurnal Responsif : Riset Sains dan Informatika Bulletin of Computer Science Research Journal of Informatics Management and Information Technology KLIK: Kajian Ilmiah Informatika dan Komputer Computer Science (CO-SCIENCE) Reputasi: Jurnal Rekayasa Perangkat Lunak Jurnal Abdimas Komunikasi dan Bahasa Indonesian Journal of Networking and Security - IJNS JUSTIN (Jurnal Sistem dan Teknologi Informasi) Jurnal Interkom : Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi J-Intech (Journal of Information and Technology) DEVICE : JOURNAL OF INFORMATION SYSTEM, COMPUTER SCIENCE AND INFORMATION TECHNOLOGY JEECS (Journal of Electrical Engineering and Computer Sciences) JURSIMA Sinergi: Jurnal Pengabdian Kepada Masyarakat Journal of Accounting Information System Bulletin of Informatics and Data Science Jurnal Ilmiah Manajemen Ekonomi Dan Akuntansi (JIMEA) Jurnal Sistem Informasi dan Manajemen Media Teknologi dan Informatika Darma Abdi Karya: Jurnal Pengabdian Kepada Masyarakat Jurnal Informatika dan Rekayasa Perangkat Lunak Jurnal Komtika (Komputasi dan Informatika) Jurnal Teknoinfo
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Computer Science (CO-SCIENCE)

Analisis Sentimen Pemanfaatan Artificial Intelligence di Dunia Pendidikan Menggunakan SVM Berbasis Particle Swarm Optimization Saepudin, Atang; Aryanti, Riska; Fitriani, Eka; Royadi, Royadi; Ardiansyah, Dian
Computer Science (CO-SCIENCE) Vol. 4 No. 1 (2024): Januari 2024
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/coscience.v4i1.2921

Abstract

The utilization of Artificial Intelligence (AI) in the field of education in Indonesia has witnessed significant developments in recent years. The advancements in AI technology have opened up new opportunities to enhance the quality of education, and address various challenges faced by the Indonesian education system. This has naturally sparked diverse opinions and comments from the public, particularly on the social media platform X/Twitter. This research focuses on sentiment analysis of reviews expressed on the X/Twitter social media platform. The primary goal of this study is to develop an effective sentiment analysis method by leveraging the Support Vector Machine (SVM) algorithm optimized with Particle Swarm Optimization (PSO) for feature selection. In this research, user reviews from X/Twitter were collected and analyzed to identify positive or negative sentiments within the context of each comment. The SVM algorithm was used to classify sentiments based on similarity to comments with known sentiments. Feature Selection PSO was employed to optimize the parameters within SVM to enhance sentiment analysis accuracy. The results of sentiment analysis on comments or tweets on the X/Twitter social media platform using both SVM and PSO-based SVM algorithms indicated that the PSO-based SVM algorithm achieved a higher accuracy. The SVM algorithm with feature selection PSO produced accuracy 89.50%, precision 86.98%, recall 93.00%, and AUC 0.964. Meanwhile, the SVM algorithm had accuracy 87.50%, precision 85.46%, recall 90.50%, and AUC 0.956. This demonstrates that the use of feature selection PSO in the SVM algorithm is capable of improving the accuracy of the results.
Analisis Sentimen Pemanfaatan Artificial Intelligence di Dunia Pendidikan Menggunakan SVM Berbasis Particle Swarm Optimization Saepudin, Atang; Aryanti, Riska; Fitriani, Eka; Royadi, Royadi; Ardiansyah, Dian
Computer Science (CO-SCIENCE) Vol. 4 No. 1 (2024): Januari 2024
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/coscience.v4i1.2921

Abstract

The utilization of Artificial Intelligence (AI) in the field of education in Indonesia has witnessed significant developments in recent years. The advancements in AI technology have opened up new opportunities to enhance the quality of education, and address various challenges faced by the Indonesian education system. This has naturally sparked diverse opinions and comments from the public, particularly on the social media platform X/Twitter. This research focuses on sentiment analysis of reviews expressed on the X/Twitter social media platform. The primary goal of this study is to develop an effective sentiment analysis method by leveraging the Support Vector Machine (SVM) algorithm optimized with Particle Swarm Optimization (PSO) for feature selection. In this research, user reviews from X/Twitter were collected and analyzed to identify positive or negative sentiments within the context of each comment. The SVM algorithm was used to classify sentiments based on similarity to comments with known sentiments. Feature Selection PSO was employed to optimize the parameters within SVM to enhance sentiment analysis accuracy. The results of sentiment analysis on comments or tweets on the X/Twitter social media platform using both SVM and PSO-based SVM algorithms indicated that the PSO-based SVM algorithm achieved a higher accuracy. The SVM algorithm with feature selection PSO produced accuracy 89.50%, precision 86.98%, recall 93.00%, and AUC 0.964. Meanwhile, the SVM algorithm had accuracy 87.50%, precision 85.46%, recall 90.50%, and AUC 0.956. This demonstrates that the use of feature selection PSO in the SVM algorithm is capable of improving the accuracy of the results.
Co-Authors Agus Junaidi Agustiani, Sarifah Aldian Mauluda Alif Rizqi Mulyawan Andi Saryoko Andreas Roy Prasetya Ari Sulistiyawati Arifin, Yosep Tajul Asriyani Sagiyanto ASRIYANI SAGIYANTO, ASRIYANI Atang Saepudin Atang Saepudin Atang Saepudin Azis, Munawar Abdul Bayu Kusuma Ilyasa Universitas Bina Sarana Informatika Cindy Sri Wahyuni Dahlia Dahlia Darma Setiawan Putra Dede Firmansyah Dede Firmansyah Saefudin Dedi Darwis Deni Gunawan Diah Puspitasari Dian Ardiansyah Dian Ardiansyah Eka Dyah Setyaningsih Eka Fitriani Eka Fitriani Eka Fitriani Eka Fitriyani Fachri, Muhamad Faradiva, Aulia Haliza Ramadhanti, Pristya Harefa, Kristine Hariyanto, Gebby Amara Putri Sugeng Haryani Hasan, Fuad Nur Henny Leidiyana Herdian Pratama I Gede Iwan Sudipa Ilham Hudi Aim Abdulkarim Kokom Komalasari, Ilham Hudi Aim Abdulkarim Irfan Ridwan Jananto Watori Junhai Wang Kamil, Anton Abdul Basah Khairani, Yashinta KOMALASARI, YULI Lubis, Anisah Azzahra Martenia, Rina Masjuwita Aulia Munthe Masngud Megawaty, Dyah Ayu Mesran, Mesran Mochamad Wahyudi Nova Damai Yanti Bancin Nurazila, Riska Oktaviyani Oktaviyani Oprasto, Raditya Rimbawan Pasaribu, A. Ferico Octaviansyah Perani Rosyani Permana, Rifky Pristya Haliza Ramadhanti Rachilsyah Ramdhani Efendi Rahmat Hidayat Rahmat Hidayat Ramadhani, Arya Ramadhani, Nadia Thalia Richardus Eko Indrajit Rifky Permana Rifqi Rizaldi Rina Martenia Rizqi Nur Esmeralda Rosiun Universitas Bina Sarana Informatika Roy Prasetya, Andreas Royadi - Royadi Royadi Royadi, Royadi SALMAN ALFARIZI Salman Alfarizi Samudi Samudi Sari Dewi Universitas Bina Sarana Informatika PSDKU Pontianak Setiawansyah Setiawansyah Siti Khotimatul Wildah Siti Marlina, Siti siti rodiah Sopiyan Dalis Sumanto, Sumanto Titik Misriati Tri Wahyuni tri wahyuni Ulum, Faruk Utami, Ajeng Ayun Dining Vitantri, Vitantri Wahyudi, Agung Deni Wahyuni, Cindy Sri Walim Walim Wang, Junhai Yanto, Andika Bayu Hasta Yarimani Laia