Claim Missing Document
Check
Articles

Found 12 Documents
Search

Proses Torefaksi Dengan Metode Batch Untuk Meningkatkan Nilai Kalor Tandan Kosong Kelapa Sawit Chuchita, Chuchita; Karelius, Karelius; Sari, Meiyanti Ratana
Bohr: Jurnal Cendekia Kimia Vol 1 No 01 (2022): Bohr: Jurnal Cendekia Kimia Vol 01 No 01
Publisher : Program Studi Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Palangka Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36873/bohr.v1i01.5574

Abstract

Abstrak Indonesia merupakan negara produsen dan eksportir kelapa sawit terbesar di dunia, yang menghasilkan limbah biomassa yang melimpah. Produksi minyak sawit tahun 2018 di Indonesia sebesar 34,94 juta ton dengan hasil samping berupa tandan kosong (23%), mesokarp serat (12%), dan cangkang sawit (5%). Cangkang inti sawit merupakan biomassa potensial yang dapat meningkatkan kualitas sebagai bahan bakar padat melalui proses termokimia. Pemanfaatan limbah hasil industri kelapa sawit menjadi bahan bakar dengan modifikasi termokimia dapat menjadi salah satu solusi untuk membuat nilai tambah dari limbah tersebut. Torefaksi adalah salah satunya proses termokimia yang saat ini digunakan untuk meningkatkan kualitas biomassa. Metode yang biasa digunakan untuk proses torefaksi di laboratorium adalah metode batch. Namun, metode ini memiliki kelemahan ketika kapasitas ditingkatkan membuat penurunan kualitas bahan bakar yang dihasilkan. Dalam penelitian ini, kualitas cangkang sawit torefaksi dari batch luas permukaan internal dibandingkan dengan torrefaksi batch yang di modifikasi. Torefaksi proses dilakukan pada suhu 275° C, dengan waktu 30 menit. Hasilnya menunjukkan bahwa torefaksi dari metode batch yang dimodifikasi memiliki nilai kalor yang lebih baik, dan dekat dengan bahan bakar. Abstract Indonesia is the largest producer and exporter of palm oil in the world, which produces abundant biomass waste. Palm oil production in 2018 in Indonesia was 34.94 million tons with by-products in the form of empty fruit bunches (23%), fiber mesocarp (12%), and palm shells (5%). Palm kernel shell is a potential biomass that can improve its quality as a solid fuel through a thermochemical process. Utilization of waste from the palm oil industry into fuel with thermochemical modifications can be one solution to create added value from the waste. Torrefaction is one of the thermochemical processes currently used to improve the quality of biomass. The method commonly used for the torrefaction process in the laboratory is the batch method. However, this method has a disadvantage when the capacity is increased, resulting in a decrease in the quality of the resulting fuel. In this study, the quality of the torrefaction palm shells of the internal surface area batch was compared with the torrefaction of the modified batch. Torrefaction process was carried out at a temperature of 275°C, with a time of 30 minutes. The results show that the torrefaction of the modified batch method has a better calorific value, and is close to that of the fuel
DECOLORIZATION OF TEXTILE DYES WITH CRUDE LIGNINOLYTIC ENZYMES FROM Coriolopsis caperata Agnestisia, Retno; Karelius, Karelius; Oksal, Efriyana; Nion, Yanetri Asi
Jurnal Bioteknologi & Biosains Indonesia (JBBI) Vol. 12 No. 1 (2025)
Publisher : BRIN - Badan Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jbbi.2025.10931

Abstract

The textile industry is a major contributor to global water pollution, releasing an estimated 280,000 tons of synthetic dyes annually into aquatic ecosystems. These dyes, particularly azo compounds, are often toxic, mutagenic, and resistant to conventional wastewater treatment methods. Microbial enzymatic degradation, especially by white-rot fungi, offers a promising eco-friendly alternative. This study aimed to optimize the production of ligninolytic enzymes—Laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP)—from Coriolopsis caperata, and assess their efficiency in degrading two azo dyes: Reactive Red 21 (RR21) and Reactive Orange 107 (RO107). The fungus, isolated from the Peat Swamp Forest in Sebangau, Central Kalimantan, was cultured in a modified glucose-peptone medium enriched with veratryl alcohol. The optimization parameters included variations in time, dye concentration, and the addition of hydrogen peroxide (H₂O₂). Enzyme activity was quantified spectrophotometrically, and dye decolorization was assessed over time at different dye concentrations. Among the enzymes, Lac showed the highest activity (4938.05 U/L), followed by LiP (995.26 U/L) and MnP (246.47 U/L). These values notably exceed several previously reported benchmarks for fungal enzyme activity. RO107 demonstrated greater susceptibility to enzymatic degradation, with 83.71% decolorization achieved at 24 hours, while RR21 reached 65.71% at 48 hours. The addition of 1 mM H₂O₂ significantly enhanced decolorization, increasing RR21 and RO107 removal to 95.71% and 99.30%, respectively. These results underscore the oxidative synergy between H₂O₂ and ligninolytic enzymes, particularly LiP and MnP. Overall, the study demonstrates the potential scalability of C. caperata-based enzymatic treatment systems for textile effluent bioremediation, supporting compliance with environmental discharge regulations and contributing to sustainable wastewater management.