Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Jambura Journal of Biomathematics (JJBM)

Analisis Kestabilan Model Predator-Prey dengan Infeksi Penyakit pada Prey dan Pemanenan Proporsional pada Predator Siti Maisaroh; Resmawan Resmawan; Emli Rahmi
Jambura Journal of Biomathematics (JJBM) Volume 1, Issue 1: June 2020
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v1i1.5948

Abstract

The dynamics of predator-prey model with infectious disease in prey and harvesting in predator is studied. Prey is divided into two compartments i.e the susceptible prey and the infected prey. This model has five equilibrium points namely the all population extinction point, the infected prey and predator extinction point, the infected prey extinction point, and the co-existence point. We show that all population extinction point is a saddle point and therefore this condition will never be attained, while the other equilibrium points are conditionally stable. In the end, to support analytical results, the numerical simulations are given by using the fourth-order Runge-Kutta method.
The existence of Neimark-Sacker bifurcation on a discrete-time SIS-Epidemic model incorporating logistic growth and allee effect Sidik, Amelia Tri Rahma; Panigoro, Hasan S.; Resmawan, Resmawan; Rahmi, Emli
Jambura Journal of Biomathematics (JJBM) Volume 3, Issue 2: December 2022
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v3i2.17515

Abstract

This article investigates the dynamical properties of a discrete time SIS-Epidemic model incorporating logistic growth rate and Allee effect. The forward Euler discretization method is employed to obtain the discrete-time model. All possible fixed points are identified including their local dynamics. Some numerical simulations by varying the step size parameter are explored to show the analytical findings, the existence of Neimark-Sacker bifurcation, and the occurrence of period-10 and 20 orbits
Global stability of a fractional-order logistic growth model with infectious disease Panigoro, Hasan S.; Rahmi, Emli
Jambura Journal of Biomathematics (JJBM) Volume 1, Issue 2: December 2020
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v1i2.8135

Abstract

Infectious disease has an influence on the density of a population. In this paper, a fractional-order logistic growth model with infectious disease is formulated. The population grows logistically and divided into two compartments i.e. susceptible and infected populations. We start by investigating the existence, uniqueness, non-negativity, and boundedness of solutions. Furthermore, we show that the model has three equilibrium points namely the population extinction point, the disease-free point, and the endemic point. The population extinction point is always a saddle point while others are conditionally asymptotically stable. For the non-trivial equilibrium points, we successfully show that the local and global asymptotic stability have the similar properties. Especially, when the endemic point exists, it is always globally asymptotically stable. We also show the existence of forward bifurcation in our model. We portray some numerical simulations consist of the phase portraits, time series, and a bifurcation diagram to validate the analytical findings.
Analisis dinamik model SVEIR pada penyebaran penyakit campak Ahaya, Sitty Oriza Sativa Putri; Rahmi, Emli; Nurwan, Nurwan
Jambura Journal of Biomathematics (JJBM) Volume 1, Issue 2: December 2020
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v1i2.8482

Abstract

In this article, we analyze the dynamics of measles transmission model with vaccination via an SVEIR epidemic model. The total population is divided into five compartments, namely the Susceptible, Vaccinated, Exposed, Infected, and Recovered populations. Firstly, we determine the equilibrium points and their local asymptotically stability properties presented by the basic reproduction number R0. It is found that the disease free equilibrium point is locally asymptotically stable if satisfies R01 and the endemic equilibrium point is locally asymptotically stable when R01. We also show the existence of forward bifurcation driven by some parameters that influence the basic reproduction number R0 i.e., the infection rate Î± or proportion of vaccinated individuals θ. Lastly, some numerical simulations are performed to support our analytical results.
Analisis dinamik model predator-prey tipe Gause dengan wabah penyakit pada prey Ibrahim, Rusdianto; Yahya, Lailany; Rahmi, Emli; Resmawan, Resmawan
Jambura Journal of Biomathematics (JJBM) Volume 2, Issue 1: June 2021
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v2i1.10363

Abstract

This article studies the dynamics of a Gause-type predator-prey model with infectious disease in the prey. The constructed model is a deterministic model which assumes the prey is divided into two compartments i.e. susceptible prey and infected prey, and both of them are hunted by predator bilinearly. It is investigated that there exist five biological equilibrium points such as all population extinction point, infected prey and predator extinction point, infected prey extinction point, predator extinction point, and co-existence point. We find that all population extinction point always unstable while others are conditionally locally asymptotically stable. Numerical simulations, as well as the phase portraits, are given to support the analytical results.
Computational dynamics of a Lotka-Volterra Model with additive Allee effect based on Atangana-Baleanu fractional derivative Panigoro, Hasan S.; Rahmi, Emli
Jambura Journal of Biomathematics (JJBM) Volume 2, Issue 2: December 2021
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v2i2.11886

Abstract

This paper studies an interaction between one prey and one predator following Lotka-Volterra model with additive Allee effect in predator. The Atangana-Baleanu fractional-order derivative is used for the operator. Since the theoretical ways to investigate the model using this operator are limited, the dynamical behaviors are identified numerically. By simulations, the influence of the order of the derivative on the dynamical behaviors is given. The numerical results show that the order of the derivative may impact the convergence rate, the occurrence of Hopf bifurcation, and the evolution of the diameter of the limit-cycle.