Claim Missing Document
Check
Articles

Found 11 Documents
Search

Utilizing the Welch-Powell Algorithm and the IDO (Incident Degree Ordering) Algorithm in Traffic Light Settings Latif, Sintia Abdul; Nurwan; K. Hasan, Isran; Achmad, Novianita; Wungguli, Djihad; Nashar, La Ode
Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam Vol. 21 No. 1 (2024): Sainmatika : Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam
Publisher : Universitas PGRI Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31851/sainmatika.v21i1.9630

Abstract

The road junction needs some help with the timing of traffic lights. One method for optimizing crossroads traffic light settings is using a graph approach that applies a vertex coloring algorithm. The Welch-Powell and IDO (Incident Degree Ordering) algorithms are used to solve this problem. This case study covers two crossroads, namely: the crossroads of Prof. Dr. H.B. Jassin, Jenderal Sudirman Street, and the crossroads of Prof. Dr. H.B. Jassin, Palma, Sarini Abdullah Street. The result showed that the Welch-Powell and IDO algorithms used for vertex coloring produced XG=3 chromatic numbers for Prof. Dr. H.B Jassin, Jenderal Sudirman Street, and XG=4 for Prof. Dr. H.B Jassin, Palma, and Sarini Abdullah Street. New data shows that green-light efficiency increases by 23.85% and red-light efficiency decreases by 19.26% for crossroads of three, and new data at crossroads of four shows that data in the field is more effective than new data.
Analisis Kontrol Optimal Pada Model Matematika Penyebaran Pengguna Narkoba Dengan Faktor Edukasi Resmawan; Eka, M; Nurwan; Achmad, N
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 17 No. 2 (2020)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/2540766X.2020.v17.i2.15201

Abstract

ABSTRACT This paper discusses the mathematical model of drug users with education. Optimal control theory was used on this model with education as a control to achieve the goal of minimizing the number of drug users. The optimal control problem was analyzed using Pontryagin’s minimum principle and performed numerical simulation by using a 4th-order Runge-Kutta method. Based on the numerical simulation, there was a change in the number in each population which caused the population with education to increase, and control with education resulted in the reduced number of drug users. Keywords: Optimal control; mathematical model; drug users; education ABSTRAK Artikel ini membahas tentang model matematika penyebaran pengguna narkoba dengan faktor edukasi. Teori kontrol optimal diterapkan pada model ini dengan pemberian kontrol berupa edukasi dengan tujuan untuk meminimumkan jumlah pengguna narkoba. Kontrol optimal dianalisis menggunakan Prinsip Minimum Pontryagin dan dilakukan simulasi numerik dengan menggunakan metode Runge-Kutta orde 4. Berdasarkan simulasi diperoleh bahwa terjadi perubahan jumlah di tiap populasi dan mengakibatkan jumlah populasi dengan edukasi bertambah, serta pemberian kontrol dengan edukasi mengakibatkan jumlah pengguna narkoba berkurang. Kata kunci : Kontrol optimal; model matematika; pengguna narkoba; edukasi
Analisis Critical Path Method dan Time Cost Trade Off dalam Optimasi Waktu dan Biaya Pengerjaan Proyek Pembangunan Rumah Sakit Rahayu, S; Nurwan; Wungguli, D
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 19 No. 2 (2022)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/2540766X.2022.v19.i2.16176

Abstract

Proyek merupakan suatu usaha/aktivitas yang kompleks, tidak rutin, dibatasi oleh waktu, anggaran, resources, dan spesifikasi performansi yang dirancang untuk memenuhi kebutuhan konsumen. Suatu proyek yang besar tentu saja memerlukan waktu dan biaya yang tepat untuk memperoleh durasi pembangunan serta biaya yang dikeluarkan lebih optimal. Optimalisasi merupakan proses pengajuan durasi proyek untuk mendapatkan solusi yang efisien dengan menggunakan berbagai alternatif yang dapat ditinjau dari segi biaya serta waktu. Dalam penelitian ini bertujuan untuk menentukan kegiatan mana yang termasuk kategori jalur kritis, melakukan perbandingan upah tenaga kerja antara penggunaan jam kerja (lembur) dengan penggunaan 2 shift kerja menggunakan metode Time Cost Trade Off, dan menentukan waktu yang paling optimal untuk menyelesaikan proyek tersebut. Tahapan penelitian ini adalah mencari jalur kritis dengan menggunakan Critical Path Method, melakukan analisis durasi dan biaya upah tenaga kerja pada jalur kritis dengan variabel penambahan jam kerja (lembur) dan penggunaan 2 shift kerja menggunakan pendekatan Time Cost Trade Off. Berdasarkan hasil analisis dan perhitungan, biaya upah tenaga kerja normal dengan durasi proyek 210 hari ialah sebesar Rp. 1.542.804.496,00. Kemudian percepatan dilakukan sehingga menghasilkan waktu optimal untuk penyelesaian proyek tersebut yaitu penggunaan 2 shift kerja, dengan durasi proyek menjadi 151 hari dengan biaya sebesar Rp. 1.488.970.000 dengan menghemat waktu 59 hari dengan selisih biaya sebesar Rp. 53.834.496,00 dari biaya normal.
Pengelompokan Data Stunting di Indonesia Menggunakan Metode X-Means dan Agglomerative Hierarchical Clustering Wahab, Nur Dhea; Nasib, Salmun K.; Nurwan; Wungguli, Djihad; Yahya, Nisky Imansyah
Research in the Mathematical and Natural Sciences Vol. 4 No. 1 (2025): November 2024-April 2025
Publisher : Scimadly Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55657/rmns.v4i1.201

Abstract

Stunting is one of the serious problems that threaten the quality of human resources in Indonesia. This study aims to analyze the patterns and characteristics of stunting in Indonesia by applying the X-Means clustering method and Agglomerative Hierarchical Clustering (AHC). The X-Means method is used to determine the optimal number of clusters automatically by utilizing the Bayesian Information Criterion (BIC), while AHC forms a dendrogram to understand the multilevel structure of the clusters formed. Based on the analysis, the X-Means method produces three optimal clusters with the smallest BIC value of 651.9475, where cluster 1 consists of 17 provinces, cluster 2 includes 12 provinces, and cluster 3 includes 5 provinces. The AHC method with the Single Linkage approach also produced three optimal clusters, with cluster 1 covering 32 provinces, cluster 2 consisting of 1 province (West Nusa Tenggara), and cluster 3 covering 1 province (East Nusa Tenggara), as well as the highest Silhouette Index value of 0.28. The results show that both methods provide a comprehensive picture of stunting patterns in Indonesia, which can be used as a basis for designing more targeted intervention programs according to the characteristics of each cluster. This data-driven strategy is expected to increase policy effectiveness in reducing stunting in Indonesia.
The Implementation of Problem-Based Learning to Improve Mathematical Problem Solving Ability: A Case on Social Arithmetics Laiya, Wirda S.; Abbas, Nurhayati; Nurwan
(JIML) JOURNAL OF INNOVATIVE MATHEMATICS LEARNING Vol. 8 No. 2 (2025): VOLUME 8 NUMBER 2, JUNE 2025
Publisher : IKIP Siliwangi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22460/jiml.v8i2.28121

Abstract

Mathematics plays a crucial role in fostering students’ logical, systematic, and critical thinking skills. However, many students still struggle to understand mathematical concepts that are closely related to real-life situations, such as social arithmetic. This study aims to improve students’ mathematical problem-solving skills through the implementation of the Problem-Based Learning (PBL) model. This research was conducted as Classroom Action Research (CAR) in class VII-1 of MTs. Negeri 1 Boalemo, involving 30 students. The study followed the Kemmis and McTaggart model, consisting of two cycles, each with four phases: planning, implementation, observation, and reflection. Data were collected using observation sheets to measure teacher and student activities, and problem-solving tests developed based on Polya’s indicators: understanding the problem, planning a solution, implementing the solution, and reviewing the result. The collected data were analyzed descriptively and quantitatively to determine the level of improvement. The results showed a significant increase in the learning process and student achievement. The teacher’s ability to manage learning increased from 55.56% in Cycle I to 88.89% in Cycle II. Student activity rose from 37.50% to 87.50%, and the number of students achieving mastery increased from 53.33% to 90%. Therefore, the PBL model effectively enhances students’ mathematical problem-solving abilities and promotes active, collaborative learning in the classroom.
Studi Perilaku Bullying Pada Siswa Sekolah Menengah Atas: Pendekatan Regresi Logistik Biner Humalanggi, Ghita Juliana; Nurwan; Payu, Muhammad Rezky Friesta
Griya Journal of Mathematics Education and Application Vol. 5 No. 2 (2025): Juni 2025
Publisher : Pendidikan Matematika FKIP Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/griya.v5i2.637

Abstract

Bullying is a social problem that has a negative impact on students' psychological development and learning environment. This study aims to develop a binary logistic regression model to explain bullying behavior and the factors that significantly influence bullying behavior among students at SMA Negeri 1 Tibawa. The method used was a quantitative survey through a questionnaire with 54 statements, including the variable bullying behavior (Y) and five independent variables: individual factors (X1), family factors (X2), peer factors (X3), school factors (X4), and social media factors (X5). A sample size of 300 students was selected using simple random sampling technique from a population of 1,197 students. The analysis was conducted using binary logistic regression with the help of RStudio software. Partial test results show that only peer factors (X3) have a significant effect on bullying behavior. The odds ratio value shows that students with moderate and high levels of peer influence are 7.47 and 38.34 times more likely to engage in bullying behavior compared to low levels. The Hosmer-Lemeshow test showed the model fit the data. In conclusion, the binary logistic regression model can explain bullying behavior, with peer factors as the dominant factor that needs to be the focus of prevention in the school environment.
Pemanfaatan Pelabelan Harmonis Graf Ular S_n Dalam Kriptografi Polialfabetik Tahir, Fauzia D.; Katili, Muh Rifai; Yahya, Nisky Imansyah; Wungguli, Djihad; Asriadi; Nurwan; Armayani Arsal
Jurnal Derivat: Jurnal Matematika dan Pendidikan Matematika Vol. 12 No. 2 (2025): Jurnal Derivat (Agustus 2025)
Publisher : Pendidikan Matematika Universitas PGRI Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31316/j.derivat.v12i2.7815

Abstract

This research discusses harmonious labeling on the snake graph  and its application in polyalphabetic cryptography. A harmonious labeling is an injective function from the set of vertices to the set of integers modulo , defined as . This function induces an edge labeling function . For each edge connecting vertices  and , the edge label is given by , producing distinct edge labels. This study presents the construction process of harmonious labeling on the snake graph , where  and . The results show that the snake graph satisfies the conditions for being harmoniously labeled since each edge receives a unique label. The vertex set of  is defined as  and the edge set as  The harmonious labeling on this graph is then applied in cryptography, particularly in forming a cipher table used as a key in the polyalphabetic encryption and decryption process. This approach enhances cryptographic security, as a single plaintext letter can be transformed into various ciphertext possibilities, thereby increasing encryption strength and complicating message decryption attempts by unauthorized parties.  Keywords: harmonious labeling, snake graph, cryptography, polyalphabetic cipher
Studi Praktik Akuntansi Pada Usaha Mikro, Kecil dan Menengah Selama Masa Pandemi COVID Palupi, Ade; Jumansyah; Syafei, Ade Wirman; Nurwan
Jurnal Riset Akuntansi dan Auditing Vol 10 No 3 (2023): Jurnal Riset Akuntansi dan Auditing
Publisher : Sekolah Tingg Ilmu Ekonomi Y.A.I Jakarta - Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55963/jraa.v10i3.595

Abstract

Penelitian ini bertujuan untuk melihat apakah UMKM menjadi lebih terdorong untuk melakukan praktik penganggaran, pencatatan, pengendalian setelah adanya pandemic COVID tahun 2020 sampai 2022 dan strategi apa yang digunakan untuk ketahanan keuangan. Populasi survey diambil dari UMKM yang terdaftar dalam https://dataumkm.com/ dan sample diambil berdasarkan probability sampling. Survey direspon sebesar empat puluh dua UMKM yang sudah merepresentasikan daerah barat sampai timur Indonesia. Data hasil survey dianalisa dengan menggunakan microsoft excell sebagai alat bantu. Novelty penelitian ini adalah UMKM berada pada strategi menghadapi (cope strategy) daripada strategi antisipasi pada saat terjadi krisis keuangan karena kondisi praktik penganggaran, pencatatan dan pengendalian mereka masih dalam tahap formulasi. Hasil penelitian adalah (1) praktik penganggaran masih belum banyak dilakukan oleh UMKM; (2) UMKM menjadi lebih sadar untuk melakukan pencatatan akuntansi dan penyusunan laporan keuangan pada saat menghadapi krisis keuangan akibat adanya pandemic COVID; (3) praktik pengendalian mulai dilakukan oleh UMKM sejalan terbatasnya sumber daya yang dimilikinya; (4) UMKM lebih mengandalkan dana simpanan untuk mempertahankan bisnisnya pada saat pandemi COVID. Implikasi dari hasil penelitian ini adalah memberikan alasan untuk mengambil tindakan berupa transfer pengetahuan akuntansi dan manajemen secara kontinyu kepada UMKM untuk memperkuat kondisi keuangannya.
Bifurkasi Periode Ganda dan Neimark-Sacker pada Model Diskret Leslie-Gower dengan Fungsi Respon Ratio-Dependent Reza Mokodompit; Nurwan; Emli Rahmi
Limits: Journal of Mathematics and Its Applications Vol. 17 No. 1 (2020): Limits: Journal of Mathematics and Its Applications Volume 17 Nomor 1 Edisi Ju
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dinamika model Leslie-Gower dengan fungsi respon ratio-dependent yang didiskretisasi menggunakan skema Euler maju adalah fokus utama pada artikel ini. Analisis diawali dengan mengidentifikasi eksistensi dari titik ekuilibrium dan kestabilan lokalnya. Diperoleh empat titik ekuilibrium yaitu titik kepunahan kedua populasi dan titik kepunahan predator yang selalu tidak stabil, dan titik kepunahan prey dan eksistensi kedua populasi yang stabil kondisional. Selanjutnya dipelajari eksistensi dari bifurkasi periode ganda dan Neimark-Sacker di sekitar titik eksistensi kedua populasi sebagai akibat perubahan parameter h ( time-step ). Dari hasil analisis ditemukan bahwa bifurkasi periode ganda terjadi setelah melewati h=h_a atau h=h_c dan bifurkasi Neimark-Sacker terjadi setelah melewati h=hb. Di akhir pembahasan, diberikan simulasi numerik yang mendukung hasil analisis sebelumnya.
Sifat Fundamental Pada Granum Eulerian Suaib A. Siraj; Asriadi; Djihad Wungguli; Hasan S. Panigoro; Nurwan; Nisky I. Yahya
Limits: Journal of Mathematics and Its Applications Vol. 21 No. 2 (2024): Limits: Journal of Mathematics and Its Applications Volume 21 Nomor 2 Edisi Ju
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Mathematical analysis has several important connections with graph theory. Although initially, they may seem like two separate branches of mathematics, there are relationship between them in several aspects, such as graphs as mathematical objects that can be analyzed using concepts from analytic mathematics. In graph theory, one often studies distance, connectivity, and paths within a graph. These can be further analyzed using analytic mathematics, such as in the structure of natural numbers. Literature studies on graph theory, especially Eulerian graphs, are interesting to explore. An Eulerian path in a graph G is a path that includes every edge of graph G exactly once. An Eulerian path is called closed if it starts and ends at the same vertex. The concept of granum theory as a generalization of undirected graphs on number structures provides a rigorous approach to graph theory and demonstrates some fundamental properties of undirected graph generalization. The focus of this study is to introduce the connectivity properties of Eulerian granum. The granum G(e,M) is called connected if for every u,v E M with u != v there exists a path subgranumG^' (e,M^' )c G(e,M)  where u,v E M^' and is called an Eulerian granum if there exists a surjective mapping O: [||E(G(e,M))|| + 1]-> M such that e(o(n),o(n+1))=1 for every n E [||E(G(e,M))||]. This property provides a deeper understanding of the structure and characteristics of Eulerian granum, which have not been fully comprehended until now.