Articles
PEMODELAN STRUKTURAL EQUATION MODEL- PARTIAL LEAST SQUARE (SEM-PLS) PADA MINAT BERTRANSAKSI MENGGUNAKAN APLIKASI OVO
Setia Ningsih;
Hendra Dukalang;
Armayani Arsal
Jambura Journal of Probability and Statistics Vol 3, No 2 (2022): Jambura Journal Of Probability and Statistics
Publisher : Department of Mathematics, Universitas Negeri Gorontalo
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.34312/jjps.v3i2.16882
The payment system in Indonesia is transforming from making payments in cash to non-cash. Non-cash payments can be made with various payment applications, one of which is the OVO application. Non-cash payments are less loved by many people, this is due to concerns about the security or ease and effectiveness of non-cash payment applications. Therefore, this study was conducted to analyze the factors that influence student interest in Gorontalo province in transacting using the OVO application using the Structural Equation Model Partial Least Square (SEM-PLS). The data analysis technique used is variance-based SEM. The results showed that the perceived convenience, effectiveness and security variables affected the interest in transacting using the OVO application with an R-square value of 70.70 percent.
The Influence of Consumer Behavior After COVID-19 Pandemic on Use of Digital Wallets in Gorontalo
Armayani Arsal;
Setia Ningsih
Jurnal Ekonomi Islam Vol 2 No 1 (2023): February 2023
Publisher : Scimadly Publishing
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.55657/iefj.v2i1.111
This research is a descriptive quantitative research type, with the aim of looking at the influence of consumer behavior during the COVID-19 pandemic on the use of digital wallets in Gorontalo. The variables used are cultural, social, personal, and psychological. The data used are primary data obtained through a questionnaire with a total of 50 respondents. The data are was processed using multiple linear regression through the Eviews program. From the results of this study it was found that personal and psychological variables had a significant influence on the dependent variable, namely the use of digital wallets. It is hoped that further researchers will be able to examine more deeply and take more samples so that the results obtained are more accurate.
Efek Literasi Keuangan Terhadap Minat Berbisnis Menggunakan Model Persamaan Struktural Least Square Parsial
Setia Ningsih;
Armayani Arsal
Journal of Principles Management and Business Vol. 2 No. 01 (2023): Journal of Principles Management and Bussines
Publisher : Scimadly Publishing
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.55657/jpmb.v2i01.109
The ability to manage finances can affect one's interest in entrepreneurship. With good financial conditions and knowledge of financial management can improve the business being undertaken. This study aims to determine the effect of financial literacy consisting of financial knowledge, financial behavior and financial attitude on people's interest in entrepreneurship. This research was conducted by conducting a survey of 96 respondents selected using purposive sampling technique and determining the number of samples using the Lemeshow formula. The data collection method uses a questionnaire that is distributed via the Google form. The data analysis technique used is variance-based SEM, namely SEM-PLS. The results of the study show that the variables financial knowledge, financial behavior and financial attitude have a positive and significant impact on people's interest in entrepreneurship with an R-Square value of 76.40%.
Operasi Cross-Union pada Koleksi Himpunan Koteri Majority
Arsal, Armayani;
Ningsih, Setia
Research in the Mathematical and Natural Sciences Vol. 1 No. 2 (2022): May-October 2022
Publisher : Scimadly Publishing
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (216.923 KB)
|
DOI: 10.55657/rmns.v1i2.61
Coterie is a collection of sets called quorum which satisfies that any two sets have a non-empty intersection and are not property contained in one another. Based on topology, there are many types of coterie, for example, majority coterie. The majority coterie is a type of coterie with more availability than others to solve the problem of a distributed system. There are two types of majority coterie, dominated and non-dominated. The coterie join algorithm is an easy way to construct a new coterie with sizes larger quorum. In this study, we define a union operation for a majority coterie, called a cross-union operation. Then we prove that by using this algorithm, a new coterie is non-dominated if and only if the initial coteries are non-dominated.
Penerapan Simulasi Monte Carlo untuk Pengukuran Value at Risk (VaR)
Ningsih, Setia;
Arsal, Armayani
Research in the Mathematical and Natural Sciences Vol. 1 No. 2 (2022): May-October 2022
Publisher : Scimadly Publishing
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (279.896 KB)
|
DOI: 10.55657/rmns.v1i2.62
The purpose of this study was to determine the measurement of value at risk (VaR) in Islamic stocks using the Monte Carlo simulation. The population used in this study are companies whose shares are listed on the Jakarta Islamic Index (JII). For the selection of samples using purposive sampling with the criteria of selecting companies engaged in the mining sector, namely ADRO, ANTM, INCO and PTBA. The results showed that the difference in VaR values in each replication was caused by differences in the results of each simulation carried out, but the results were not different. far from each other because the parameters used in the simulation are the same. Therefore, in order to stabilize the results, the average value of the resulting VaR is taken. Based on the calculation results, the average value obtained is Rp. 1.132.721 at a 95% confidence level in a period of one day.
Analysis of the Availability of the Majority Quorum System Resulting from Cross Union Operations
Arsal, Armayani;
Setia Ningsih
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 21 No. 1 (2024)
Publisher : Program Studi Matematika, Universitas Tadulako
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22487/2540766X.2024.v21.i1.16342
Cross union operation is an operasi to arrange a new majority coterie which we combine each quorum of another two different majority coterie. The purpose of this research is to analyse the availability comparison of quorum system between majority coterie and join majority coterie by cross union operation. By the analyse result, we know that majority coterie, which even universe set (number of element is even), has the same availability as join majority coterie which arranged by odd universe set (number of element is odd). While join majority coterie which arranged by even universe set, has relatively the same availability as majority coterie which even universe set. Finally, we conclude that the availability of majority coterie is relatively the same as join majority coterie by cross union.
Penyelesaian Persamaan Diferensial Menggunakan Metode Runge Kutta Orde Keenam Dengan Algoritma Paralel
Al Fajri, Iman;
Hendra;
Kusuma, Jeffry;
Musdalifah, Selvy;
Nacong, Nasria;
Sain, Hartayuni;
Arsal, Armayani
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 20 No. 2 (2023)
Publisher : Program Studi Matematika, Universitas Tadulako
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22487/2540766X.2023.v20.i2.16354
Penelitian tentang paralelisasi terus mengalami perkembangan saat ini, termasuk dalam perhitungan numerik. Pada tulisan ini akan dibahas penyelesaian persamaan diferensial menggunakan metode Runge-Kutta orde keenam dengan algoritma paralel. Makalah ini menyajikan penurunan dari metode Runge-Kutta orde keenam yang cocok untuk implementasi secara paralel. Pengembangan model paralel didasarkan pada struktur ketersebaran. Hasil perhitungan dengan model paralel kemudian akan dibandingkan dengan model sekuensial dari sisi akurasi dan waktu eksekusi. Pehitungan numerik menunjukkan bahwa metode paralel lebih mendekati solusi analitik, artinya akurasinya lebih baik. Ditinjau dari sisi waktu eksekusi, metode paralel juga memiliki keunggulan dibandingakan dengan metode sekuensial, yaitu lebih cepat.
On The Rainbow Connection Of Middle Graph Of Firecracker Graphs (F_(n,4))
Rahim, Delvira Masita;
Nurwan, Nurwan;
Yahya, Nisky Imansyah;
Wungguli, Djihad;
Arsal, Armayani
JMEA : Journal of Mathematics Education and Application Vol 4, No 1 (2025): Februari
Publisher : JMEA : Journal of Mathematics Education and Application
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.30596/jmea.v4i1.22686
Coloring in graph theory includes various approaches, one of which is rainbow coloring which is closely related to the concept of rainbow connected numbers which refers to the least number of colors needed to color the edges in a graph so that every two vertices connected in a rainbow path have the same color and is denoted by rc(G). Rainbow coloring can be studied in several forms of graph development, one of which is the middle graph. All types of graphs, both simple and complex, can be represented as a middle graph. A middle graph is a graph whose vertices are obtained from the vertices and edges of graph G and is denoted by V (M(G)) = V (G)∪(G). Two points in a middle graph are considered adjacent if and only if they are adjacent edges in G or one of the points is adjacent to an edge of G. In this research, we discuss the number rc(G) on the middle graph of firecracker graph (F_(n,4)) with n ≥ 2. Based on the research results, we obtain the rainbow connected number theorem on the middle graph of firecrackers graph rc(M(F_(n,4))) = 3n + 2 for n ≥ 2.
Penjadwalan Mata Pelajaran Menggunakan Metode Integer Linear Programming di SMA Negeri 1 Tilango
Djafar, Fitria;
Katili, Muhammad Rifai;
Nasib, Salmun K;
Nurwan, Nurwan;
Wungguli, Djihad;
Arsal, Armayani
Research in the Mathematical and Natural Sciences Vol. 4 No. 1 (2025): November 2024-April 2025
Publisher : Scimadly Publishing
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.55657/rmns.v4i1.200
Penjadwalan mata pelajaran secara optimal sangat penting untuk memastikan kelancaran kegiatan belajar dan mengajar. Di SMA Negeri 1 Tilango, penjadwalan yang dilakukan secara manual oleh pihak kurikulum cenderung memakan waktu yang cukup lama, sehingga sering terjadi bentrok antar mata pelajaran pada waktu yang bersamaan. Proses penjadwalan manual ini cukup sulit karena harus memenuhi semua aturan dan kebijakan sekolah yang berlaku. Untuk mengatasi tantangan tersebut, digunakan metode integer linear programming (ILP) yang dapat membantu menyusun jadwal mata pelajaran secara lebih efisien dan terstruktur. Penelitian ini bertujuan untuk menghasilkan jadwal mata pelajaran yang ideal dengan meminimalkan total bobot pelajaran, hari, dan waktu menggunakan metode ILP. Penyusunan jadwal diselesaikan dengan bantuan software Lingo 18.0. Hasil penelitian menunjukkan bahwa jadwal yang dihasilkan dengan metode ILP lebih optimal dibandingkan dengan penjadwalan manual, karena mampu memenuhi semua batasan dan kendala yang telah ditentukan oleh sekolah..
Pemilihan Metode Optimal Untuk Prediksi Angka Kemiskinan Di Provinsi Gorontalo: Perbandingan Double Exponential Smoothing dan Bayesian Structural Time Series
wolah, Meitasya;
Nasib, Salmun K.;
Arsal, Armayani;
Hasan, Isran K.;
Asriadi;
Abdussamad, Siti Nurmardia
Research in the Mathematical and Natural Sciences Vol. 4 No. 1 (2025): November 2024-April 2025
Publisher : Scimadly Publishing
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.55657/rmns.v4i1.202
Kajian ini mengevaluasi angka kemiskinan di Indonesia yang masih tinggi dengan fokus pada Provinsi Gorontalo yang menjadi urutan kelima sebagai provinsi termiskin di Indoneisa. Meskipun angka kemiskinan ekstrem nasional menurun menjadi 1,12% pada Maret 2023, Gorontalo mencatat masih 183,71 ribu penduduk miskin dengan garis kemiskinan per kapita sebesar Rp 442.194. Tujuan penelitian ini untuk membandingkan dua teknik peramalan, yaitu Bayesian Structural Time Series (BSTS) dan Double Exponential Smoothing (DES) untuk menilai efektivitas masing-masing metode dalam memprediksi angka kemiskinan di Provinsi Gorontalo. Hasil analisis menunjukkan bahwa model Double Exponential Smoothing (DES) memiliki Mean Absolute Percentage Error (MAPE) sebesar 6,6%, lebih rendah dibandingkan MAPE Bayesian Structural Time Series (BSTS) yang mencapai 7,39%. MAPE yang lebih rendah pada Double Exponential Smoothing (DES) menunjukkan kemampuannya yang lebih baik dalam mengidentifikasi pola data dan menghasilkan perkiraan yang lebih akurat. Meskipun BSTS mampu menangkap komponen musiman dan Trend dengan teknik probabilistik yang canggih, hasil ini menegaskan bahwa Double Exponential Smoothing (DES) adalah metode yang lebih efektif untuk memprediksi angka kemiskinan di Provinsi Gorontalo.