Articles
Bilangan terhubung titik pelangi pada graf bunga (Wm,Kn) dan graf Oleander (Orn)
Taha, Dennynatalis;
Nurwan, Nurwan;
Nasib, Salmun K.;
Yahya, Nisky Imansyah
Unnes Journal of Mathematics Vol 10 No 1 (2021)
Publisher : Universitas Negeri Semarang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15294/ujm.v10i1.41247
Penelitian ini bertujuan untuk mencari bilangan terhubung titik pelangi. Misalkan G=(V(G),E(G)) adalah Graf Terhubung tak-trivial. Graf G dikatakan terhubung titik pelangi jika antara setiap dua titik pada suatu lintasan memiliki warna yang berbeda. Rainbow Vertex Connection pada graf G yang terhubung (Rvc(G) merupakan minimum warna yang dibutuhkan untuk membuat graf G terhubung titik pelangi. Pada penelitian ini membahas tentang bilangan terhubung titik pelangi (Rvc(G) pada Graf Bunga (Wm,Kn) dan Graf Oleander (Orn) . Berdasarkan hasil dari penelitian maka diperoleh rvc(Wm,Kn)=2 jika m=3 dan m=4 dan n>=3, rvc(Wm,Kn)=3 jika m=5. rvc(Orn)=diam-1 jika n=3,n=4 dan n=5, rvc(Orn)=diam-1 jika n=6
BILANGAN TERHUBUNG TITIK PELANGI PADA AMALGAMASI GRAF BERLIAN
Afifah Farhanah Akadji;
Dennynatalis Taha;
Narti Lakisa;
Nisky Imansyah Yahya
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi EULER: Volume 7 Issue 2 December 2019
Publisher : Universitas Negeri Gorontalo
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.34312/euler.v7i2.10345
Suppose there is a simple, and finite graph G = (V, E). The coloring of vertices c is denoted by c: E(G) → {1,2, ..., k} with k is the number of rainbow colors on graph G. A graph is said to be rainbow connected if every pair of points x and y has a rainbow path. A path is said to be a rainbow if there are not two edges that have the same color in one path. The rainbow connected number of graph G denoted by rc(G) is the smallest positive integer-k which makes graph G has rainbow coloring. Furthermore, a graph is said to be connected to rainbow vertex if at each pair of vertices x and y there are not two vertices that have the same color in one path. The rainbow vertex connected to the number of graph G is denoted by rvc(G) is the smallest positive integer-k which makes graph G has rainbow coloring. This paper discusses rainbow vertex-connected numbers in the amalgamation of a diamond graph. A diamond graph with 2n points is denoted by an amalgamation of a diamond graph by adding the multiplication of the graph t at point v is denoted by Amal (Brn,v,t).
Implementation of Dijkstra Algorithm and Welch-Powell Algorithm for Optimal Solution of Campus Bus Transportation
Nurwan Nurwan;
Widya Eka Pranata;
Muhamad Rezky Friesta Payu;
Nisky Imansyah Yahya
Jurnal Matematika MANTIK Vol. 7 No. 1 (2021): Mathematics and Applied Mathematics
Publisher : Mathematics Department, Faculty of Science and Technology, UIN Sunan Ampel Surabaya
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15642/mantik.2021.7.1.31-40
This research deals with applying the Dijkstra algorithm and Welch-Powell algorithm to on-campus bus transportation problems. This research aims to determine the optimal solution of campus bus transportation routes in the shortest routes and schedules. In determining the fastest way, each intersection represented as a node, and the path described as the sides. The shortest path obtained V1 - V2 - V5 - V8 - V9 - V10 - V13 - V16. In determining the optimal schedule, the number of buses represents the vertices, and the time expresses the side that connects each node. The optimal program of the bus starts from 06.30 am to 5.00 pm. Every bus gets four sessions of departure and four sessions return with travel time each session is 60 minutes.
Bilangan Terhubung Titik Pelangi pada Graf Hasil Operasi Korona Graf Prisma (P_(m,2)) dan Graf Lintasan (P_3)
Indrawati Lihawa;
Sumarno Ismail;
Isran K Hasan;
Lailany Yahya;
Salmun K Nasib;
Nisky Imansyah Yahya
Jambura Journal of Mathematics Vol 4, No 1: January 2022
Publisher : Department of Mathematics, Universitas Negeri Gorontalo
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1474.15 KB)
|
DOI: 10.34312/jjom.v4i1.11826
Rainbow vertex-connection number is the minimum k-coloring on the vertex graph G and is denoted by rvc(G). Besides, the rainbow-vertex connection number can be applied to some special graphs, such as prism graph and path graph. Graph operation is a method used to create a new graph by combining two graphs. Therefore, this research uses corona product operation to form rainbow-vertex connection number at the graph resulting from corona product operation of prism graph and path graph (Pm,2 P3) (P3 Pm,2). The results of this study obtain that the theorem of rainbow vertex-connection number at the graph resulting from corona product operation of prism graph and path graph (Pm,2 P3) (P3 Pm,2) for 3 = m = 7 are rvc (G) = 2m rvc (G) = 2.
Algatika: Mathematics Private Lending Applications As An Effort To Increase Students Learning Interest In Mathematics Learning
Septi Rahmita Sari;
Amelia T. R. Sidik;
Nisky Imansyah Yahya
Journal of Mathematics and Mathematics Education Vol 11, No 1 (2021): Journal of Mathematics and Mathematics Education (JMME)
Publisher : Universitas Sebelas Maret
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.20961/jmme.v11i1.52740
In the era of sustainable development, education is a fundamental right for everyone. Education is a process of helping humans develop themselves so that they can face all problems with an open attitude. One way to help students clarify the concepts and understanding of mathematics that is being studied during the learning process is by using teaching aids. Teaching aids serve to facilitate the purpose of implementing learning in schools. However, the fact is that the use of mathematics teaching aids during learning at school is not yet entrenched, especially in areas far from urban areas, many of which do not have teaching aids. This directly impacts students' lack of understanding and learning experience, resulting in low student learning outcomes. This paper will introduce ALGATIKA, an application of lending mathematics teaching aids for elementary and junior high schools which can later solve these problems. The research methodology used is a qualitative descriptive method by deepening the material through literature studies. The result is that the lack of teaching aids in some schools can be overcome by the ALGATIKA application of lending mathematics teaching aids in elementary and junior high schools. Thus this application can help provide the teaching aids needed to build and improve educational facilities and provide an effective learning environment for all. It can develop students' teaching and learning processes and create higher quality education which leads to relevant and effective learning outcomes in accordance with the targets of the SDG's in education.
SEBUAH GENERALISASI GRAF TAK BERARAH PADA HIMPUNAN BAGIAN TERBATAS DARI BILANGAN ASLI
Asriadi Asriadi;
BERTU RIANTO TAKAENDENGAN;
NISKY IMANSYAH YAHYA
Jurnal Matematika UNAND Vol 11, No 1 (2022)
Publisher : Jurusan Matematika FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmu.11.1.47-52.2022
Tulisan ini mengkaji tentang sebuah generalisasi graf tak berarah dengan fokus pada pada himpunan bagian terbatas dari bilangan asli. Generalisasi ini adalah sebuah pendekatan rigor untuk teori graf. Beberapa sifat fundamental dari generalisasi graf tak berarah akan menjadi fokus dalam tulisan ini.
Bilangan Terhubung Titik Pelangi Kuat Graf Octa-Chain (OCm)
Nisky Imansyah Yahya;
Karina Anselia Mamonto;
Nurwan Nurwan;
Lailany Yahya;
Djihad Wungguli;
La Ode Nashar
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi EULER: Volume 10 Issue 1 June 2022
Publisher : Universitas Negeri Gorontalo
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.34312/euler.v10i1.15177
An Octa-Chain graph (OCm) is a graph formed by modifying the cycle graph C8 by adding an edge connecting the midpoints in C8. The minimum number of colors used to color the vertices in a graph so that every two vertices have a rainbow path is called the rainbow vertex-connected number denoted by rvc (G). While the minimum number of colors used to color the vertices in a graph so that every two vertices are always connected by a rainbow path is called a strong rainbow vertex connected number and is denoted by srvc (G). This study aims to determine the rainbow vertex-connected number (rvc) and the strong rainbow-vertex-connected number (srvc) in the Octa-Chain graph (OCm). The results obtained from this research are the rainbow vertex-connected number rvc (OCm)=2m and the strong rainbow-vertex-connected number srvc (OCm)=2m.
BILANGAN TERHUBUNG PELANGI PADA GRAF SALJU (Sn_m)
Cindy Aisa Putri Noor;
Lailany Yahya;
Salmun K Nasib;
Nisky Imansyah Yahya
Journal of Fundamental Mathematics and Applications (JFMA) Vol 4, No 1 (2021)
Publisher : Diponegoro University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (2065.745 KB)
|
DOI: 10.14710/jfma.v4i1.9035
Suatu graf dikatakan terhubung pelangi jika terdapat lintasan antara dua titik yang setiap sisi-sisinya memiliki warna berbeda. Misalkan terdapat suatu graf G tak trivial dengan definisi warna c:E(G)->{1,2,3,...}, maka bilangan terhubung pelangi dari graf G yaitu minimum k dari pewarnaan-k pelangi yang digunakan untuk mewarnai graf G dan dinotasikan dengan rc(G). Tujuan dari penelitian ini yaitu untuk menentukan bilangan terhubung pelangi pada graf salju (Sn_m). Metode yang digunakan pada penelitian ini yaitu metode studi literatur dengan prosedur sebagai berikut; menggambar graf salju, mencari pola bilangan terhubung pelangi, dan membuktikan teorema bilangan terhubung pelangi pada graf salju (Sn_m). Sehingga diperoleh rc(Sn_m)=m+1 untuk 3<=m<=7 dan m={9,10} dan rc(Sn_m)=m untuk m=8 dan m>=11.
BILANGAN TERHUBUNG PELANGI PADA GRAF HASIL OPERASI KORONA GRAF ANTIPRISMA (APm) DAN GRAF LENGKAP (K4)
Khairun Nisa Humolungo;
Sumarno Ismail;
Isran K. Hasan;
Nisky Imansyah Yahya
Jurnal Matematika UNAND Vol 11, No 2 (2022)
Publisher : Jurusan Matematika FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmua.11.2.112-123.2022
Bilangan terhubung pelangi didefinisikan sebagai banyaknya jumlah warna minimum yang dibutuhkan untuk membuat graf G menjadi terhubung pelangi, dengan syarat sisi yang termasuk dalam lintasan pelangi tidak boleh memiliki warna yang sama. Bilangan terhubung pelangi disimbolkan dengan rc(G). Seiring berkembangnya ilmu pengetahuan dan penelitian, maka bilangan terhubung pelangi mulai diterapkan ke dalam operasi graf. Penelitian ini menggunakan operasi korona untuk mengetahui bilangan terhubung pelangi dari graf antiprisma (APm) dan graf lengkap (K4). Berdasarkan hasil penelitian, maka diperoleh teorema bilangan terhubung pelangi dari graf (APm ⊙ K4) = 2m untuk 3 ≤ m ≤ 7 dan bilangan terhubung pelangi dari graf (K4 ⊙ APm) = 4 untuk m = {3, 4} ∧ 2m − 2 untuk 5 ≤ m ≤ 9, m ganjil ∧ 2m untuk 5 ≤ m ≤ 9, m genap.
Critical Path Method dan Algoritma Genetika untuk Optimasi Durasi dan Biaya Pembangunan
Wahdania A.T. Ja’a;
Muhammad Rifai Katili;
Djihad Wungguli;
Nisky Imansyah Yahya
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi EULER: Volume 10 Issue 2 December 2022
Publisher : Universitas Negeri Gorontalo
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.34312/euler.v10i2.14488
A large project requires proper scheduling to obtain the duration of development and costs incurred more optimally. Optimization is submitting the project duration efficient solution by using various alternatives that can be reviewed in terms of cost and time. Optimization problems can be solved using operating research. Selected Critical Path Method and Genetic Algorithm as a compelling method for planning and an methods rolling schedules the Critical Method because this method considers the assumption of time, then the implementation of the project is done without thinking about resources and can also determine when an activity starts and when the end of the project. While the Genetic Algorithm method is a method that can provide quick and efficient results in forming a project schedule. Based on the results of the study obtained that has managed to get the optimization value by minimizing the duration of the project using CPM (Critical Path Method) is 199 days from the total project time of the construction of the health center Biau 210 working days. and the costs incurred due to the optimization using genetic algorithms amounted to Rp. 231,515,082 from the initial cost of the project of Rp.382,784,000.