Claim Missing Document
Check
Articles

Found 13 Documents
Search

PENERAPAN METODE MULTI OBJECTIVE OPTIMIZATION ON THE BASIC OF RATIO ANALYSIS (MOORA) UNTUK PEMILIHAN PENERIMA BANTUAN LANGSUNG TUNAI DI DESA ILOMANGGA Handayani, Tri Pratiwi; Pratiwi I Wantu; Irawan Ibrahim; Hilmansyah Gani
Jurnal Ilmiah Teknik Mesin, Elektro dan Komputer Vol. 3 No. 2 (2023): Juli: Jurnal Ilmiah Teknik Mesin, Elektro dan Komputer
Publisher : Pusat Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/juritek.v3i2.1724

Abstract

Penelitian ini bertujuan untuk mengimplementasikan algoritma Multi-Objective Optimization on the Basis of Ratio Analysis (MOORA) sebagai Pendukung Keputusan dalam memilih penerima Bantuan Tunai Langsung di Desa Ilomangga, Gorontalo. Dengan dataset sebanyak 169 calon penerima, penelitian ini berfokus pada pengembangan pendekatan yang efisien untuk membantu kepala desa dalam proses pemilihan penerima manfaat. Dengan menggabungkan optimisasi multi-obyektif dan analisis rasio, algoritma MOORA secara objektif mengevaluasi dan mengurutkan penerima berdasarkan kelayakan dan kesesuaian. Temuan penelitian ini menunjukkan efektivitas MOORA dalam menyederhanakan proses seleksi, memastikan transparansi, dan mengoptimalkan alokasi sumber daya bagi mereka yang paling membutuhkan. Penelitian ini memberikan kontribusi pada sistem pendukung keputusan dengan memperlihatkan implementasi praktis MOORA.
Enhancing Multi-Label Hate Speech and Abusive Language Detection on Indonesian Twitter Using Recurrent Neural Networks with Hyperparameter Tuning Handayani, Tri Pratiwi; Hilmansyah Gani
Jurnal Ilmiah Teknik Mesin, Elektro dan Komputer Vol. 3 No. 3 (2023): November: Jurnal Ilmiah Teknik Mesin, Elektro dan Komputer
Publisher : Pusat Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/juritek.v3i3.3022

Abstract

This study investigates enhancing multi-label hate speech and abusive language detection on Indonesian Twitter using Recurrent Neural Networks (RNNs) with hyperparameter tuning. A dataset of Indonesian tweets labeled for various hate speech and abusive language categories was preprocessed through text cleaning, tokenization, and sequence padding. A baseline RNN model was initially constructed and evaluated. Hyperparameter tuning was then performed using Keras Tuner to optimize performance. The best hyperparameters identified were an embedding dimension of 32, 32 LSTM units, and a dropout rate of 0.2. The tuned model was trained and compared with the baseline. Results indicated improved precision for labels like Abusive, HS_Group, HS_Moderate, and HS_Strong, but a decline in recall and F1-scores for labels like HS_Religion and HS_Race. Overall performance metrics showed a slight decline, highlighting trade-offs in the tuning process. In conclusion, while hyperparameter tuning can enhance certain performance aspects, it also introduces complexities and trade-offs. It is recommended to use hyperparameter tuning in model optimization with careful consideration of application requirements. Further research will explore different model architectures and additional tuning strategies for better overall performance.
Analisis Forensik Digital pada Kasus Penyebaran Konten Ilegal Menggunakan Metode National Intitute of Justice (NIJ) Rapia Yakob Ingahu; Wahyudin Hasyim; Hilmansyah Gani
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 8, No 6 (2025): Desember 2025
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v8i6.10129

Abstract

Abstrak - Perkembangan media sosial meningkatkan risiko penyebaran konten ilegal, seperti kasus cyberbullying di Facebook Messenger. Penelitian ini bertujuan untuk menganalisis bukti digital pada kasus penyebaran konten ilegal menggunakan metode National Institute of Justice (NIJ). Penelitian dilakukan melalui pendekatan kualitatif deskriptif berbasis skenario simulatif dan mengikuti lima tahapan metode NIJ, yaitu identifikasi, pengumpulan, pemeriksaan, analisis, dan pelaporan. Proses investigasi dilakukan menggunakan perangkat lunak FTK Imager, Autopsy, dan DB Browser for SQLite. Hasil penelitian menunjukkan bahwa pesan yang telah dihapus dapat direkonstruksi, metadata dikembalikan, serta identitas pelaku berhasil ditelusuri. Metode NIJ terbukti efektif dalam menyusun proses investigasi digital yang sistematis dan dapat dipertanggungjawabkan. Penelitian ini memberikan kontribusi terhadap praktik forensik digital dalam menanggapi kasus penyebaran konten ilegal melalui media sosial.Kata kunci : Forensik Digital; Konten Ilegal; Metode NIJ; Cyberbullying; Facebook Messenger; Abstract - The development of social media increases the risk of the distribution of illegal content, such as cases of cyberbullying on Facebook Messenger. This study aims to analyze digital evidence in cases of illegal content distribution using the National Institute of Justice (NIJ) method. The study was conducted using a descriptive qualitative approach based on simulated scenarios and followed the five stages of the NIJ method: identification, collection, examination, analysis, and reporting. The investigation process was conducted using FTK Imager, Autopsy, and DB Browser for SQLite software. The results showed that deleted messages could be reconstructed, metadata recovered, and the perpetrator's identity successfully traced. The NIJ method has proven effective in establishing a systematic and accountable digital investigation process. This research contributes to digital forensic practice in responding to cases of illegal content distribution via social media.Keywords: Digital Forensics; Illegal Content; NIJ Method; Cyberbullying; Facebook Messenger;