Claim Missing Document
Check
Articles

Found 7 Documents
Search
Journal : Metalik: Jurnal Manufaktur, Energi, Material Teknik

Kajian Eksperimental Kinerja Photovoltaic dengan Penambahan Thermoelectric Generator Rifky; Saputra, Ferdyan Arif Mawanda
METALIK : Jurnal Manufaktur, Energi, Material Teknik Vol. 4 No. 1 (2025): Metalik: Jurnal Manufaktur, Energi, Material Teknik
Publisher : Universitas Muhammadiyah PROF. DR. HAMKA Fakultas Teknik – Program Studi Teknik Mesin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22236/metalik.v4i1.20041

Abstract

Abstrak Salah satu faktor yang mempengaruhi efisiensi sistem photovoltaic adalah temperatur permukaan sel. Pada penelitian ini digunakan thermoelectric untuk mengambil panas dari permukaan sel yang diharapkan dapat menurunkan temperatur sel sehingga dapat meningkatkan efisiensinya. Tujuan dari penelitian ini adalah untuk mendapatkan peningkatan efisiensi dari hasil penuruan temperatur permukaan sel. Metodologi penelitian yang digunakan adalah eksperimental, dengan cara perbandingan efisiensi pada sistem photovoltaic tanpa thermoelectric generator dan sistem photovoltaic dengan thermoelectric generator. Sistem photovoltaic yang digunakan adalah photovoltaic polycristalin (Si) dengan daya sebesar 50 Wp sedangkan untuk sistem thermoelectric menggunakan thermoelectric generator tipe TEG SP1848-27145 SA. Pengambilan data dilakukan dengan pengukuran yang dimulai dari pukul 08.00 WIB sampai 15.00 WIB. Hasil penelitian mendapatkan bahwa efisiensi maksimum yang dihasilkan sistem photovoltaic tanpa thermoelectric generator sebesar 5,64 % sedangkan hasil efisiensi maksimum pada photovoltaic dengan thermoelectric generator sebesar 5,39 %. Abstract One of the factors that affect the efficiency of the photovoltaic system is the cell surface temperature. In this research, thermoelectric is used to take heat from the cell surface which is expected to lower the cell temperature so as to increase its efficiency. The purpose of this study was to obtain an increase in efficiency from the decrease in cell surface temperature. The research methodology used is experimental, by comparing the efficiency of the photovoltaic system without a thermoelectric generator and the photovoltaic system with a thermoelectric generator. The photovoltaic system used is a photovoltaic polycristalin (Si) with a power of 50 Wp, while the thermoelectric system uses a thermoelectric generator type TEG SP1848-27145 SA. Data collection was carried out by measuring starting from 08.00 WIB to 15.00 WIB. The results showed that the maximum efficiency of the photovoltaic system without a thermoelectric generator was 5.64%, while the maximum efficiency of the photovoltaic system with a thermoelectric generator was 5.39%.
Studi Eksperimentasi Posisi Pendingin Termoelektrik pada Kotak Pendingin terhadap Kinerja Sistem Pendingin bertenaga Panel Surya Rifky; Setiawan , Eki Hadi; Agusman, Delvis; Mujirudin, Mohammad; Avorizano, Arry
METALIK : Jurnal Manufaktur, Energi, Material Teknik Vol. 4 No. 2 (2025): Metalik: Jurnal Manufaktur, Energi, Material Teknik
Publisher : Universitas Muhammadiyah PROF. DR. HAMKA Fakultas Teknik – Program Studi Teknik Mesin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22236/metalik.v4i2.21140

Abstract

Solar cells are a powerful technology to convert solar energy into electrical energy directly, while thermoelectrics can convert electrical energy (potential difference) into heat energy (temperature difference). The combined solar cell and thermoelectric system is used as an air conditioner. The research was conducted by making a cooling system in the form of a cooling box with a cooling source on the roof side and wall side. The cooling source in this study is a thermoelectric cooling system consisting of a series of thermoelectric modules. The purpose of this study is to find that the position of the TEC affects the cooling results in the cooling box and determine the lowest temperature and performance of the cooling system in the cooling box. The method used is an experimental method with the model is a cooler box with cooler box dimensions: 520mm x 370mm x 440mm. Solar cells as electrical energy suppliers are placed in the presence of sunlight throughout the day and the output power from solar cells is distributed to the thermoelectric cooling system in series. so that thermal energy changes take place on its sides. The cold side of the thermoelectric will absorb heat from inside the cooling box, while the hot side of the thermoelectric will release heat to the environment outside the cooling box. The results showed that the positioning of the thermoelectric cooler on the roof side and the wall side of the cooler box affected the heat transfer and temperature achievement in the center of the cooler box. The average center room temperature achieved by the cooler on the roof side is 23.70 ℃ and 24.75 ℃ on the wall side. While the coefficient of performance of the cooling system in the cooler box with thermoelectric cooler on the roof side amounted to 2.17 and in the thermoelectric cooler on the wall side amounted to 1.8.
Pengaruh Tegangan Listrik dan Arus Listrik terhadap Kinerja Termoelektrik Sebagai Pendingin Termoelektrik Oktabiansyah, Tobi; Rifky
METALIK : Jurnal Manufaktur, Energi, Material Teknik Vol. 2 No. 1 (2023): Metalik: Jurnal Manufaktur, Energi, Material Teknik
Publisher : Universitas Muhammadiyah PROF. DR. HAMKA Fakultas Teknik – Program Studi Teknik Mesin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22236/metalik.v2i1.12426

Abstract

Thermoelectric material is a material that has thermal and electrical properties. The thermoelectric module can function as an electric generator, heat pump and cooler. The thermoelectric modules used in this study are the TEC 1-12706 type and the TEG SP 1848 type. This study uses both of these modules with each module using four thermoelectrics to be used as a cooling system. The purpose of the research is to obtain the lowest temperature on the cold side and the highest CoP thermoelectric performance coefficient on the two different modules with variations in the size of the electric voltage and electric current that have been determined, then to get a thermoelectric module that has a higher performance coefficient of the two types of thermoelectric modules used. used. The research method used is experimental. The two modules are separately supplied with DC electrical energy so that heat is absorbed on the cold side and heat is released on the hot side so that a temperature difference occurs, and an aluminum heatsink is attached to the cold side and the hot side. The data obtained from the input data are ambient temperature, electric voltage, and electric current. Then what is obtained from the output data is the temperature of the hot side, the temperature of the cold side, and the temperature of the cold room. The results of the study on the TEC 1-12706 module with variations in electric voltage produce a minimum cold side temperature of 5.9°C with the highest CoP value of the cooling system of 0.1821, while variations in electric current produce a minimum cold side temperature of 8.0°C with the highest CoP value of the cooling system of 0.3247. For the TEG SP 1848 module, variations in electric voltage produce a minimum cold side temperature of 8.3°C with the highest CoP value of the cooling system of 0.2371, while variations in electric current produce a minimum cold side temperature of 11.1°C with a CoP value the highest cooling system is 0.2158. Thus this study achieved the result that the use of the TEC 1-12706 module with variations in electric voltage produced the lowest temperature of 5.9 oC. While the use of TEC 1-12706 with variations in electric current produces the highest CoP value of 0.3247. There for the TEC 1-12706 module has a higher performance than the TEG SP 1848 module in terms of the lowest temperature achievement and the highest CoP value.
Effect of Capillary Pipe Length on Performance Coefficient of Refrigerator by Testing on Two Kinds of Refrigerant Febriansyah, Fikri; Rifky, Rifky
METALIK : Jurnal Manufaktur, Energi, Material Teknik Vol. 2 No. 2 (2023): Metalik: Jurnal Manufaktur, Energi, Material Teknik
Publisher : Universitas Muhammadiyah PROF. DR. HAMKA Fakultas Teknik – Program Studi Teknik Mesin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22236/metalik.v2i2.13061

Abstract

Abstrak Penggunaan pipa kapiler sebagai pengekspansi pada mesin pendingin skala kecil lebih menguntungkan. Kerja mesin pendingin dipengaruhi oleh bentuk dan dimensi pipa kapiler. Tujuan dari penelitian ini untuk mendapatkan CoP refrigerator yang menggunakan bahan refrigeran R-22 dan R410a dengan panjang pipa kapiler yang berbeda. Metode penelitian ini eksperimental dengan dilakukan pengambilan data melalui pengukuran. Penelitian ini menggunakan refrigeran R-22 dan R-410a untuk kebutuhan daya kompresor sebagai parameter penentu nilai CoP mesin pendingin. Variabel yang digunakan yaitu pipa kapiler yang terbuat dari tembaga dengan dimensi 3 m dan 4 m. refrigerator dioperasikan selama 70 menit, dimana setiap 10 menit dilakukan pengambilan data. Hasil penelitian menunjukan bahwa nilai tertinggi koefisien prestasi (CoP) untuk panjang pipa kapiler 3 m dengan refrigeran R-22 sebesar 2,509 dan dengan refrigeran R-410a sebesar 4,326. Untuk panjang pipa kapiler 4 m dengan refrigeran R-22 sebesar 2,752 dan dengan refrigeran R-410a sebesar 4,326. Temperatur keluaran evaporator terendah yang didapat adalah 20,5 dengan ukuran panjang pipa kapiler 3 m untuk refrigeran R-22. Abstract The use of capillary tubes as expanders in small-scale refrigeration machines is more profitable. Cooling machine work is influenced by the shape and dimensions of the capillary tube. The purpose of this study was to obtain a CoP refrigerator using refrigerants R-22 and R410a with different lengths of capillary tubes. This research method is experimental by taking data through measurements. This study uses refrigerants R-22 and R-410a for compressor power requirements as a parameter determining the CoP value of the refrigeration machine. The variable used is a capillary tube made of copper with dimensions of 3 m and 4 m. refrigerator is operated for 70 minutes, where every 10 minutes data is collected. The results showed that the highest value of the coefficient of achievement (CoP) for a capillary tube length of 3 m = 2.509208491 (R-22) and 4.326262393 (R-410a). For a capillary tube length of 4 m = 2.752102768 (R-22) and 4.326262393 (R-410a). The lowest evaporator output temperature obtained is 20.5 with a capillary tube length of 3 m for refrigerant R-22.
Perancangan Alat Pembuat Pelet Pakan Ternak Portable Cahyono, Fajar Nur; Rifky, Rifky; Nofendri, Yos
METALIK : Jurnal Manufaktur, Energi, Material Teknik Vol. 2 No. 2 (2023): Metalik: Jurnal Manufaktur, Energi, Material Teknik
Publisher : Universitas Muhammadiyah PROF. DR. HAMKA Fakultas Teknik – Program Studi Teknik Mesin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22236/metalik.v2i2.13105

Abstract

Abstrak Penelitian pembuatan alat pelet pakan ternak portable diperutukan sebagai alternatif pakan ternak kambing ketika musim kemarau tiba, dimana ketika musim kemarau tiba menyebabkan kelangkaan rumput pakan untuk kebutuhan pakan kambing ternak masyarakat. Teknologi yang digunakan untuk pembuatan alat ini menggunakan mesin penggerak motor bensin 4 langkah kerja dengan kecepatan maksimal 3800 rpm, kapasitas tangki bensin 3,1 liter, dan daya 5.5 HP. Mesin penggerak ini akan menghasilkan daya untuk memutar pulley dan daya tersebut akan diteruskan v-belt ke pulley extruder, extruder yang berfungsi sebagai alat penekan bahan baku untuk pelet yang kemudian dialirkan menuju die. Untuk kapasitas dari alat pencetak pelet pakan ternak ini dapat menghasilkan pelet dengan kapasitas tertentu yang dimana semakin tinggi putaran rpm dari mesin penghasil daya makan akan cepat juga perputaran screw di dalam extruder yang bilamana semakin cepat perpuatan keduanya akan semakin cepat juga bahan pelet yang akan dicetak menjadi pelet. Hasil penelitian mendapatkan bahwa alat pembuat pelet pakan ternak portable sudah dibuat dan hasil pengujian menunjukan bahwa dalam waktu 105 menit dapat menghasilkan pelet sebanyak 125,5 kg dengan produktivitas 1,2 kg/ menit. Abstract Research on making portable animal feed pellets which are intended as an alternative to animal goat feed when the dry season arrives, where when the dry season arrives it causes a scarcity of forage grass for the community's livestock goat feed needs. The technology used to manufacture this tool uses a 4 stroke gasoline engine with a maximum speed of 3800 rpm, a gas tank capacity of 3.1 liters, and a power of 5.5 HP. This driving machine will generate power to rotate the pulley and the power will be transmitted by the v-belt to the pulley extruder, the extruder which functions as a pressing device for raw materials for pellets which are then flowed to the die. For the capacity of this animal feed pellet printer, it can produce pellets with a certain capacity where the higher the rpm rotation of the feeding power-producing machine, the faster the rotation of the screw in the extruder, the faster the rotation of the two, the faster the pellet material to be printed will become. pellets. The results showed that a portable animal feed pellet maker had been made and the test results showed that within 105 minutes it could produce 125.5 kg of pellets with a productivity of 1.2 kg/minute.
Pendayagunaan Energi Matahari sebagai Sumber Energi Listrik Alternatif Menggunakan Generator Termoelektrik Rifky; Nofendri, Yos
METALIK : Jurnal Manufaktur, Energi, Material Teknik Vol. 3 No. 1 (2024): Metalik: Jurnal Manufaktur, Energi, Material Teknik
Publisher : Universitas Muhammadiyah PROF. DR. HAMKA Fakultas Teknik – Program Studi Teknik Mesin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22236/metalik.v3i1.15592

Abstract

Abstrak Energi surya adalah energi terbarukan yang potensinya besar untuk dimanfaatkan. Bentuk energi surya yang telah lama dimanfaatkan manusia adalah energi termalnya. Mulai dari pengeraing hasil bumi, perikanan, sampai pemanas air. Sementara termoelektrik adalah material yang berberntuk modul yang dapat mengubah perbedaan temperatur menjadi energi listrik. Kedua hal inilah yang dipadukan dalam penelitian ini. Penelitian memanfaatkan energi surya sebagai sumber energi listrik menggunakan generator termoelektrik. Adapun tujuan penelitian ini adalah untuk mendapatkan daya luaran semaksimal mungkin dari sistem generator termoelektrik yang susunan modulnya dirangkai dengan sambungan seri dan paralel. Dari daya luaran yang dihasilkan akan didapatkan kelayakan generator termoelektrik untuk dijadikan sumber energi pada model bangunan. Metode penelitian yang digunakan adalah eksperimental, yang didahului dengan perancangan dan pembuatan alat penelitian. Model bangunan dirancang sederhana yang berupa kerangka dengan atapnya adalah sistem generator termoelektrik. Variabel dalam penelitian ini adalah susunan rangkaian sambungan modul termoelektrik secara seri dan secara paralel. Data masukan generator termoelektrik adalah intensitas radiasi, kelembaban udara, temperatur (lingkungan, penyerap panas, sisi panas termoelektrik, sisi dingin termoelektrik, sistem pendingin, air pendingin), dan aliran alir; sedangakan data luarannya adalah tegangan listrik dan arus listrik. Hasil penelitian mendapatkan bahwa sistem generator pada atap model bangunan dengan susunan modul termoelektrik dengan rangkaian sambungan seri menghasilkan daya sebesar 1,029 watt. Sementara sistem generator termoelektrik untuk sambungan modul termoelektrik dengan rangkaian sambungan paralel menghasilkan daya sebesar 0,028 watt. Abstract Background: Solar energy is a renewable energy that has great potential to be utilized. The form of solar energy that humans have long used is thermal energy. Starting from drying agricultural products, fisheries, to water heaters. Meanwhile, thermoelectrics are materials in the form of modules that can convert temperature differences into electrical energy. These two things are combined in this research. Research utilizes solar energy as a source of electrical energy using a thermoelectric generator. The aim of this research is to obtain the maximum possible output power from a thermoelectric generator system whose modules are assembled using series and parallel connections. From the resulting output power, the suitability of the thermoelectric generator will be obtained to be used as an energy source in building models. The research method used is experimental, which is preceded by designing and manufacturing research tools. The building model is designed simply in the form of a frame with a thermoelectric generator system on the roof. The variables in this research are the arrangement of thermoelectric module connection circuits in series and in parallel. The input data of the thermoelectric generator are radiation intensity, air humidity, temperature (environment, heat absorber, thermoelectric hot side, thermoelectric cold side, cooling system, cooling water), and flow rate; while the output data is electric voltage and electric current. The research results showed that the generator system on the roof of the building model with a thermoelectric module arrangement with a series connection produced 1,029 watts of power. Meanwhile, the thermoelectric generator system for connecting thermoelectric modules with a parallel connection circuit produces 0.028 watts of power
Pengaruh Pendinginan terhadap Daya Keluaran dan Efisiensi Sistem Panel Surya Efendi, M Shofriyan; Rifky, Rifky; Nofendri, Yos; rohman, Nur
METALIK : Jurnal Manufaktur, Energi, Material Teknik Vol. 3 No. 2 (2024): Metalik: Jurnal Manufaktur, Energi, Material Teknik
Publisher : Universitas Muhammadiyah PROF. DR. HAMKA Fakultas Teknik – Program Studi Teknik Mesin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22236/metalik.v3i2.16777

Abstract

Salah satu aplikasi energi terbarukan yang memanfaatkan energi matahari adalah panel surya atau sistem fotovoltaik. Kinerja sistem fotovoltaik dipengaruhi oleh besarnya intensitas cahaya matahari dan temperatur permukaan panel surya itu sendiri. Penelitian ini mencoba mengatasi masalah temperatur tersebut dengan membuat sistem pendingin yang dirangkai pada bagian bawah panel surya. Tujuan penelitian yang ingin dicapai adalah untuk mendapatkan daya keluaran dan efisiensi sistem fotovoltaik yang maksimal dengan memasang sistem pendingin. Sistem fotovoltaik diekspos ke arah utara sepanjang hari. Sistem fotovoltaik tanpa menggunakan sistem pendingin dan yang menggunakan sistem pendingin dioperasikan dengan waktu pengukuran parameter yang sama. Parameter yang diukur adalah intensitas cahaya, kecepatan angin, debit air, temperatur lingkungan, temperatur panel surya, temperatur pendingin, tegangan listrik dan arus listrik. Hasil dari penelitian menunjukkan bahwa daya keluaran (P_out) tanpa sistem pendingin sebesar 44,439 watt dan daya keluaran (P_out) dengan sistem pendingin sebesar 49,181 watt. Efisiensi sel surya tanpa sistem pendingin sebesar 13,541% dan sel surya dengan sistem pendingin sebesar 14,162%. . Hal ini menunjukkan bahwa sistem pendingin dapat meningkatkan kinerja sel surya. One of the applications of renewable energy that utilizes solar energy is solar panels or photovoltaic systems. The performance of the photovoltaic system is influenced by the amount of sunlight intensity and the surface temperature of the solar panel itself. This research tries to solve the temperature problem by making a cooling system that is strung at the bottom of the solar panel. The research objectives to be achieved are to obtain the maximum output power and efficiency of the photovoltaic system by installing a cooling system. The photovoltaic system is exposed north throughout the day. Photovoltaic systems without the use of cooling systems and those using a cooling system are operated with the same parameter measurement time. The parameters measured are light intensity, wind speed, water discharge, environmental temperature, solar panel temperature, cooling temperature, electric voltage and electric current. The results of the research show that the output power (P_out) without a cooling system of 44.439 watts and an output power (P_out) with a cooling system of 49.181 watts. The efficiency of solar cells without a cooling system was 13,541% and a solar cell with a cooling system was 14,162%. . This shows that the cooling system can improve the performance of solar cells.