Claim Missing Document
Check
Articles

Found 16 Documents
Search

Developing Sustainable Business Practices in SMEs: A Community Outreach Initiative for Environmental and Economic Resilience Aripin
Jurnal Abdimas Peradaban Vol. 3 No. 2 (2022): Jurnal Abdimas Peradaban
Publisher : Global Writing Academica Researching and Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54783/rvakqv70

Abstract

Small and medium enterprises (SMEs) play a vital role in the economy but often face challenges in implementing sustainable business practices. Constraints such as limited resources, access to information, and unsupportive regulations make it difficult for SMEs to switch to more environmentally friendly practices. In addition, community initiatives and local support are important factors in encouraging the adoption of sustainable practices. This study aims to explore effective strategies that can help SMEs switch to sustainable business practices. This study uses a qualitative approach by collecting data from various reliable sources and analyzing them in depth. The conclusion of the study shows that the implementation of sustainable business practices by SMEs can reduce negative impacts on the environment, such as reduced carbon emissions and better waste management. In addition, these practices also increase the efficiency and productivity of SME operations. The adoption of sustainability strengthens the long-term resilience of SMEs to market changes and environmental challenges. Positive impacts are also felt by local communities, including improved quality of life and economic stability. Support from proactive government policies, adequate infrastructure, and access to green financing are critical to the success of this transition.
A Non-Invasive Allergy Detection using Convolutional Neural Network Model Aripin; Badia, Giulia Salzano; Safira, Intan
(JAIS) Journal of Applied Intelligent System Vol. 10 No. 1 (2025): April 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jais.v10i1.12783

Abstract

Skin allergy detection is critical to detect allergies that trigger serious reactions such as anaphylaxis, so people can avoid allergens and reduce the risk of complications such as anaphylactic shock. Therefore, early allergy detection screening is essential to determine the risk of allergies. This research aims to develop a system to detect skin allergies caused by food, through sensors applied to human skin using the Convolutional Neural Network (CNN) model. The research steps include literature studies, data acquisition, preprocessing, learning processes, and testing. The developed system uses a camera to capture allergic reactions on the skin. Data acquisition consists of two types of data, namely primary data and secondary data. Primary data acquisition is done by taking images of normal and allergic patient skin. Meanwhile, secondary data acquisition is obtained from Kaggle. The captured images are processed by image processing and analyzed using the CNN model. The image dataset consists of four classes, namely atopic, angioedema, normal skin, and urticaria. The CNN model consists of several layers, including convolutional layers, pooling, and fully connected layers. The results of the research showed that the prototype product can detect changes in the skin surface due to allergic reactions, such as redness or swelling, quickly and accurately. Testing the learning process with the CNN model resulted in an accuracy rate of 92%. Meanwhile, the accuracy results of testing prototype products on patients with skin allergies were 93%. It shows that the system can detect types of allergies on the skin accurately and efficiently. This system provides a practical and fast solution for the public to detect allergies, while contributing to the advancement of medical technology.Keywords - social robots, adaptive learning, reinforcement learning, human-robot interaction, sensor fusion, educational robotics
Pengaruh Kontaminasi Asap Kendaraan Terhadap Tegangan Flashover Isolator Porselen Menggunakan Metode Slow Rate of Rise Test Wanda Mulyaningsih Putri; Aripin; Nurdiansyah, Rian
E-JOINT (Electronica and Electrical Journal Of Innovation Technology) Vol 5 No 2 (2024): E-JOINT, Desember 2024
Publisher : Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/e-joint.v5i2.2498

Abstract

Isolator berperan penting dalam menjaga kestabilan dan keandalan sistem jaringan listrik. Pada kondisi lapangan kontaminasi polutan seperti asap kendaraan pada permukaan isolator dapat mengurangi kekuatan dielektrik dan meningkatkan resiko terjadinya flashover pada isolator, terlebih kondisi basah memperburuk kondisi ini. Karena itu, penelitian ini dilakukan untuk menganalisis pengaruh kontaminasi dan variasi massa polutan asap kendaraan terhadap tegangan flashover isolator. Isolator yang digunakan adalah isolator porselen jenis pasak, dengan polutan berupa jelaga asap kendaraan yang diambil dari knalpot sepeda motor dan variasi massa polutan yang diuji adalah 1, 2, 3, 5, 7, dan 9 g. Proses kontaminasi isolator oleh polutan menggunakan standar IEC 60815-1, dilakukan dengan cara mencampurkan polutan dan 50 ml air aquades lalu mengoleskannya pada permukaan isolator secara merata menggunakan kuas. Pengujian tegangan flashover dilakukan pada kondisi isolator basah dan kering menggunakan tegangan tinggi AC melalui metode Slow Rate of Rise Test. Isolator porselen bersih memiliki tegangan flashover 79,49 kV kondisi kering dan 58,84 kV kondisi basah, setelah dikontaminasi tegangan flashover menurun seiring dengan penambahan massa ploutan hingga mencapai 48,69 kV kondisi kering dan 28,54 kV kondisi basah pada massa polutan 9 g. Penelitian ini juga mengukur NSDD (Non-Soluble Deposit Density) untuk mengetahui tingkat deposit polutan pada isolator. Nilai NSDD meningkat seiring dengan penambahan massa polutan, mulai dari 0,6 mg/cm² untuk 1 g polutan hingga 5,53 mg/cm² untuk 9 g, yang berkontribusi pada penurunan tegangan flashover dan performa isolator porselen.
PERANAN ZAKAT DALAM MENGURANGI KEMISKINAN PRESPEKTIF MIKRO EKONOMI Fariq Trisna Hidayat; Aripin; Muhibban
Holistik Analisis Nexus Vol. 1 No. 6 (2024): Juni 2024
Publisher : PT. Banjarese Pacific Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62504/han576

Abstract

Penelitian ini bertujuan untuk meningkatkan pemahaman tentang peran zakat dalam mengurangi kemiskinan dan mengembangkan strategi pengelolaan zakat yang lebih efektif. Tujuan dari penelitian ini adalah untuk mengetahui dan menganalisis bagaimana dana zakat dikumpulkan, didistribusikan, dan digunakan secara efektif untuk mengurangi kemiskinan di komunitas mikro ekonomi. Dalam perspektif mikro ekonomi, metode zakat untuk mengurangi kemiskinan meliputi pengumpulan, distribusi, dan penggunaan dana zakat yang efektif dan efisien. Zakat harus diberikan kepada masyrakat secara yang sesuai dengan syariat Islam dan harus dilakukan dengan efektif dan efisien. Zakat memengaruhi konsumsi agregat, tabungan nasional, dan investasi, antara lain, dalam mengurangi kemiskinan dari sudut pandang mikro ekonomi. Hasil analisis menunjukkan bahwa zakat memiliki peran penting dalam mengurangi kemiskinan dengan cara mengumpulkan dana dari individu yang lebih mampu untuk mendistribusikannya kepada mereka yang membutuhkan.dalam kesimpulannya, zakat memainkan peran penting dalam menciptakan masyarakat yang lebih adil dan berkelanjutan dengan mengurangi kemiskinan. Pengelolaan zakat yang baik dan transparan sangat penting untuk memaksimalkan potensi zakat untuk mencapai tujuan pengentasan kemiskinan di masyarakat.
PENINGKATAN KEMAMPUAN MOTORIK HALUS PADA ANAK USIA PRASEKOLAH DENGAN KEGIATAN LOMBA MEWARNAI DI DESA KRANGGANHARJO KECAMATAN TOROH Sutiyono; Alfira Triska Maharani; Risma Aisya; Defyan Ahmad Muflizar; Aripin; Satriya Hendi Rega Dani; Ani Wahyuni; Latifatu Siyadah; Nieken Luh putu; Rahmania Isabel; Putri Syifa Ratu Ayu Jelita; Yuliyant; Shinta Amalia; Hanny Novita Sari; Erni Pustikha Sari; Meila Cindy Putri Lestari; Nur Intan Permatasari; Nurlia Fitrianingrum; Irsa Riswanda; Fiana Khayu Maftuhah; Siti Avitasari
Jurnal Pengabdian kepada Masyarakat Cahaya Negeriku Vol. 3 No. 2 (2023): Jurnal Pengabdian kepada Masyarakat Cahaya Negeriku
Publisher : LPPM AN Nuur

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

 Background: The environment and family play an important role in children's growth and development. There are still many preschool age children who still lack fine motor development due to a lack of stimulation and parental care because parents are indifferent to the development of children's fine motor skills.   Methodology: This activity was carried out to find solutions to problem solving through village community deliberations and then implemented through a coloring competition activity.   Results: After the coloring competition activity, fine motoric development in preschool children increased and parents understood fine motoric development in children   Conclusion: Parents' knowledge about fine motor development increases, children can carry out tasks well, children's willingness to color contributes to fine motor development in preschool children.  
Perancangan Alat Deteksi Alergi Berbasis Sensor Dengan Kecerdasan Buatan Giulia Salzano Badia; Intan Safira; Liala Syarifah Wahdani; Discha Zahra Amanina; Aris Febriyanto; Aripin
Journal Scientific of Mandalika (JSM) e-ISSN 2745-5955 | p-ISSN 2809-0543 Vol. 6 No. 11 (2025)
Publisher : Institut Penelitian dan Pengembangan Mandalika Indonesia (IP2MI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36312/10.36312/vol6iss11pp4303-4312

Abstract

This research aims to develop a non-invasive allergy detection tool using artificial intelligence technology, specifically the Convolutional Neural Network (CNN) method. This tool is designed to detect allergic reactions caused by food through sensors applied to human skin. The research methodology includes literature study, data collection, design creation, system design, tool creation, and testing stages. This tool uses a camera to detect allergic reactions on the skin, which are then analyzed using an image processing algorithm with the CNN method integrated in a minicomputer. Data processing on skin reaction samples to allergic substances is divided into four classes, including atopic, angioedema, normal skin, and urticaria. The CNN algorithm used consists of several layers, including convolutional layers, pooling, and fully connected layers. The data collection process is carried out with 2 data, namely primary data and secondary data. Primary data collection is done by taking images of normal and allergic patient skin. Secondary data is obtained from Kaggle. The results of the study show that this tool prototype is able to detect changes in the skin surface due to allergic reactions, such as redness or swelling, quickly and accurately. Testing of this device yielded an accuracy rate of 92%, indicating its high accuracy in detecting allergic reactions