Claim Missing Document
Check
Articles

Found 26 Documents
Search

Penyelesaian Persamaan Telegraph Dan Simulasinya Surur, Agus Miftakus; Adi, Yudi Ari; Sugiyanto, Mr.
Jurnal Fourier Vol 2, No 1 (2013)
Publisher : UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.114 KB)

Abstract

Equation Telegraph is one of type from wave equation. Solving of the wave equation obtainable by using Greens function with the method of boundary condition problem. This research aim to to show the process obtain;get the mathematical formula from wave equation and also know the form of solution of wave equation by using Greens function. Result of analysis indicate that the process get the mathematical formula from wave equation from applicable Greens function in equation which deal with the wave equation, that is applied in equation Telegraph.  Solution started with searching public form from Greens function, hereinafter look for the solving of wave equation in Greens function. Application from the wave equation used to look for the solving of equation Telegraph.  Result from equation Telegraph which have been obtained will be shown in the form of picture (knowable to simulasi) so that form of the the equation Telegraph.
Modeling and Prediction of COVID-19 with a Large Scale Social Distancing Adi, Yudi Ari; Ndii, Meksianis Z.
Jurnal Fourier Vol 9 No 1 (2020)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/fourier.2020.91.1-9

Abstract

Coronavirus 2019 (COVID-19), yang kasusnya dimulai di Cina, dalam kurun waktu dua bulan telah menyebar dengan cepat ke lebih dari 114 negara dan territorial. Pemahaman tentang dinamika penularan Covid-19 sangat penting untuk menentukan kebijakan dan strategi dalam pengobatan dan pengendalian penyebaran penyakit ini. Dalam makalah ini, disusun model matematika yang menggambarkan dinamika penularan penyakit menggunakan model matematika deterministik dengan menggunakan data penyebaran COVID-19 di Jakarta, Indonesia dari 3 Maret 2020, hingga 10 April 2020. Model berbentuk Sistem persamaan diferensial yang selanjutnya dilakukan analisis matematika dan simulasi numerik. Hasil simulasi menunjukkan bahwa tanpa intervensi, angka reproduksi penyebaran Covid-19 di Provisi Jakarta sekitar 1,658 dan jika Pembatasan Sosial Berskala Besar (PSBB) diimplementasikan, maka angka reproduksinya turun menjadi 1,40. Lebih lanjut, epidemi diperkirakan akan berakhir sekitar akhir November 2020 dengan kasus puncak pada pertengahan Juni 2020 dengan jumlah orang yang dikonfirmasi positif terinfeksi mencapai sekitar 9.000 jiwa. Dari hasil pemodelan ini, disimpulkan bahwa untuk meminimalkan penularan penyakit, perlu menerapkan kebijakan dan kontrol yang lebih ketat. [Coronavirus disease 2019 (COVID-19) which was initiated in China, has spread rapidly in more than 114 countries and territories over the last two months. An understanding of the dynamics of Covid-19 transmission is very important to determine policies and strategies in the treatment and control of the spread of this disease. In this paper, we formulated a mathematical model that describes the transmission dynamics of the disease using a deterministic mathematical model and the model is validated against data from Jakarta, Indonesia from March 3, 2020, to April 10, 2020. Mathematical analysis and numerical simulations are presented. We found that without intervention, the reproduction number is around 1.658 and the reproduction number declines to 1.40 if large scale social distancing is implemented. Furthermore, the end time of epidemic is predicted to be around the end of November 2020 with peak cases around mid-June 2020 and the number of confirmed infected individuals is around 9,000. To minimize the transmission of the diseases, it is necessary to enforce strict policies and controls.]
PENGEMBANGAN PLATFORM PROMOSI UMKM DALAM RANGKA MENDUKUNG KEGIATAN KOTAGEDE SMART DISTRICT Surono, Sugiyarto; Adi, Yudi Ari; Irsalinda, Nursyiva
Jurnal Berdaya Mandiri Vol 3, No 1 (2021): Jurnal Berdaya Mandiri (JBM)
Publisher : Universitas PGRI Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (243.75 KB) | DOI: 10.31316/jbm.v3i1.1212

Abstract

Usaha mikro kecil dan menengah (UMKM) merupakan salah satu penggerak roda perekonomian di masyarakat. Kotagede merupakan salah satu kecamatan di kota Yogyakarta yang memiliki UMKM dengan jumlah 497 usaha. Dalam upaya mempromosikan dan mempublikasikan produk-produk yang ada di Kecamatan Kotagede dan menunjang program Kecamatan Kotagede menuju Smart District maka diperlukan analisis khusus UMKM Kecamatan Kotagede untuk menciptakan suatu Platform yang memuat informasi UMKM baik pelaku maupun produk yang dihasilkan serta fasilitas lain yang dibutuhkan oleh pelaku UMKM maupun masyarakat. Hasil analisis data UMKM yang telah dilakukan menunjukkan bahwa UMKM dengan modal dibawah Rp. 250.000.000 sebesar 80%. Oleh karena itu, dalam rangka mengembangkan UMKM diwilayahnya pihak kecamatan sebaiknya membuat platform perizinan untuk mempermudah proses perizinan UMKM.
Optimal Control and Cost-Effectiveness Analysis in An Epidemic Model with Viral Mutation and Vaccine Intervention Adi, Yudi Ari; Irsalinda, Nursyiva; Ndii, Meksianis Z
CAUCHY Vol 7, No 2 (2022): CAUCHY: Jurnal Matematika Murni dan Aplikasi (May 2022) (Issue in Progress)
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i2.13184

Abstract

This paper introduces an optimal control problem in a two-strain SIR epidemic model with viral mutation and vaccine administration. The purpose of this study was to investigate the efficacy and cost-effectiveness of two disease prevention strategies, namely restriction of community mobility to prevent disease transmission and vaccine intervention. We consider the time-dependent control case, and we use Pontryagin’s Maximum Principle to derive necessary conditions for the optimal control of the disease. We also calculate the Average Cost-Effectiveness Ratio (ACER) and the Incremental Cost-Effectiveness Ratio (ICER) to investigate the cost-effectiveness of all possible strategies of the control measures. The results of this study indicate that the most cost-effective disease control strategy is a combination of mobility restriction and vaccination.
MODEL MATEMATIKA INTERAKSI SEL LEUKEMIA DAN SEL SEHAT PADA LEUKEMIA LIMFOBLASTIK Kurnia, Titik; Adi, Yudi Ari
Unnes Journal of Mathematics Vol 9 No 1 (2020)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujm.v9i1.35170

Abstract

Leukemia limfoblastik akut (LLA) adalah keganasan hematologi yang ditandai dengan produksi limfoblas berlebih di sumsum tulang. Pengobatan dengan kemoterapi adalah terapi kuratif utama pada LLA. Dalam makalah ini diberikan model matematika interaksi antara sel-sel leukemia dan sel-sel sehat pada LLA dengan pemberian obat kemoterapi. Model berupa sistem persamaan diferensial dalam 3 variabel yang mendeskripsikan interasi antara sel leukemia, sel sehat dan obat kemoterapi. Selanjutnya dibahas sifat-sifat solusi meliputi kepositifan, kerterbatasan, eksistensi dan ketunggalan solusi serta kestabilan titik ekuilibrium. Hasil penelitian menunjukkan beberapa kemungkinan yang terjadi akibat pemberian kemoterapi pada penderita LLA. Hasil ini diharapkan dapat menjadi referensi bagi dokter dan tenaga medis untuk dapat memberikan manajemen kemoterapi dengan efek samping minimal sehingga kasus LLA dapat ditangani lebih baik.
MODEL MATEMATIKA SS_M IR PADA PENYEBARAN COVID-19 DENGAN PENERAPAN PEMBERLAKUAN PEMBATASAN KEGIATAN MASYARAKAT (PPKM) DI JAWA TENGAH Feriastuti, Erina Tri; Adi, Yudi Ari
Unnes Journal of Mathematics Vol 10 No 2 (2021)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujm.v10i2.51341

Abstract

Coronavirus or COVID-19 which was first discovered in China in Desember, 2019. COVID-19 is an infectious disease caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-Cov-2). WHO declared COVID-19 a pandemic on March 11, 2020. This virus spreads rapidly because the transmission is directly from human to other human. An understanding of the spread of COVID-19 important to determine policies in control of the spread of COVID-19. In this research, a simple mathematical model of the spread of COVID-19 in era PPKM and the model is validated against data from Jawa Tengah, Indonesia from August 1, 2021, to August 31, 2021. In this simulation has been a sensitivity analysis of model to determine the influential parameters on the basic reproduction number (R0) . Based on the numerical solution sensitivity analysis the results show that interaction rate are the most influential parameters on R0. From the result research it can be concluded that implementation of PPKM in Central Java Province was successful because it can reduce the number of population infected with COVID-19 in Central Java, which is needs to reduce community activities or mobality and control the implementation of PPKM so that there is no spike in cases infected of COVID-19 in Central Java.
Penyelesaian Persamaan Telegraph Dan Simulasinya Agus Miftakus Surur; Yudi Ari Adi; Sugiyanto Sugiyanto
Jurnal Fourier Vol. 2 No. 1 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.114 KB) | DOI: 10.14421/fourier.2013.21.33-43

Abstract

Equation Telegraph is one of type from wave equation. Solving of the wave equation obtainable by using Green's function with the method of boundary condition problem. This research aim to to show the process obtain;get the mathematical formula from wave equation and also know the form of solution of wave equation by using Green's function. Result of analysis indicate that the process get the mathematical formula from wave equation from applicable Green's function in equation which deal with the wave equation, that is applied in equation Telegraph. Solution started with searching public form from Green's function, hereinafter look for the solving of wave equation in Green's function. Application from the wave equation used to look for the solving of equation Telegraph. Result from equation Telegraph which have been obtained will be shown in the form of picture (knowable to simulasi) so that form of the the equation Telegraph.
Modeling and Prediction of COVID-19 with a Large Scale Social Distancing Yudi Ari Adi; Meksianis Z. Ndii
Jurnal Fourier Vol. 9 No. 1 (2020)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/fourier.2020.91.1-9

Abstract

Coronavirus 2019 (COVID-19), yang kasusnya dimulai di Cina, dalam kurun waktu dua bulan telah menyebar dengan cepat ke lebih dari 114 negara dan territorial. Pemahaman tentang dinamika penularan Covid-19 sangat penting untuk menentukan kebijakan dan strategi dalam pengobatan dan pengendalian penyebaran penyakit ini. Dalam makalah ini, disusun model matematika yang menggambarkan dinamika penularan penyakit menggunakan model matematika deterministik dengan menggunakan data penyebaran COVID-19 di Jakarta, Indonesia dari 3 Maret 2020, hingga 10 April 2020. Model berbentuk Sistem persamaan diferensial yang selanjutnya dilakukan analisis matematika dan simulasi numerik. Hasil simulasi menunjukkan bahwa tanpa intervensi, angka reproduksi penyebaran Covid-19 di Provisi Jakarta sekitar 1,658 dan jika Pembatasan Sosial Berskala Besar (PSBB) diimplementasikan, maka angka reproduksinya turun menjadi 1,40. Lebih lanjut, epidemi diperkirakan akan berakhir sekitar akhir November 2020 dengan kasus puncak pada pertengahan Juni 2020 dengan jumlah orang yang dikonfirmasi positif terinfeksi mencapai sekitar 9.000 jiwa. Dari hasil pemodelan ini, disimpulkan bahwa untuk meminimalkan penularan penyakit, perlu menerapkan kebijakan dan kontrol yang lebih ketat. [Coronavirus disease 2019 (COVID-19) which was initiated in China, has spread rapidly in more than 114 countries and territories over the last two months. An understanding of the dynamics of Covid-19 transmission is very important to determine policies and strategies in the treatment and control of the spread of this disease. In this paper, we formulated a mathematical model that describes the transmission dynamics of the disease using a deterministic mathematical model and the model is validated against data from Jakarta, Indonesia from March 3, 2020, to April 10, 2020. Mathematical analysis and numerical simulations are presented. We found that without intervention, the reproduction number is around 1.658 and the reproduction number declines to 1.40 if large scale social distancing is implemented. Furthermore, the end time of epidemic is predicted to be around the end of November 2020 with peak cases around mid-June 2020 and the number of confirmed infected individuals is around 9,000. To minimize the transmission of the diseases, it is necessary to enforce strict policies and controls.]
A Within-host Tuberculosis Model Using Optimal Control Yudi Ari Adi
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 5, No 1 (2021): April
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v5i1.3813

Abstract

 In this paper, we studied a mathematical model of tuberculosis with vaccination for the treatment of  tuberculosis. We considered an in-host tuberculosis model that described the interaction between Macrophages and Mycobacterium tuberculosis and investigated the effect of vaccination treatments on uninfected macrophages. Optimal control is applied to show the optimal vaccination and effective strategies to control the disease. The optimal control formula is obtained using the Hamiltonian function and Pontryagin's maximum principle. Finally, we perform numerical simulations to support the analytical results. The results suggest that control or vaccination is required if the maximal transmission of infection rate at which macrophages became infected is large. In this paper, we studied a mathematical model of tuberculosis with vaccination for the treatment of  tuberculosis.We considered an in-host tuberculosis model that described the interaction between macrophages Macrophages and Mycobacterium tuberculosis and investigated the effect of vaccination treatments on uninfected macrophages. Optimal controlis applied to show the optimal vaccination and effective strategies to control the disease. The optimal control formula isobtained using the Hamiltonian function and Pontryagin's maximum principle. Finally, we perform numerical simulations to support the analytical results.The results suggest thatcontrol or vaccination is required if the maximal transmission of infection rate at which macrophages became infected is large.
Model matematika terapi kanker dengan viroterapi Thariq Muhariyanto; Yudi Ari Adi
Jurnal Ilmiah Matematika Vol 7, No 1 (2020)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/konvergensi.v7i1.19538

Abstract

Model merupakan penyederhanaan fenomena-fenomena nyata dalam bentuk matematika. Salah satunya adalah model matematika pada terapi kanker dengan virus oncolytic atau yang disebut viroterapi. Viroterapi merupakan terapi kanker yang menggunakan virus sebagai terapinya. Virus yang digunakan yaitu virus onkolitik. Sistem persamaan dalam penelitian ini menggunakan sistem persamaan diferensial nonlinier dengan melibatkan tiga variabel yaitu sel tumor tidak terinfeksi x(t), sel tumor terinfeksi y(t), dan partikel virus bebas v(t). Kemudian dilakukan analisis model matematika yang meliputi titik ekuilibrium, kestabilan di sekitar titik ekuilibrium, dan simulasi numerik. Analisis kestabilan dilakukan untuk mempelajari kedinamikan suatu system dengan tujuan menyelidiki jenis kestabilan dari titik-titik ekuilibrium pada setiap variabel dalam model, sehingga dapat diketahui kapan mencapai titik keseimbangan (ekuilibrium). Hasil penelitian menunjukkan terdapat tiga titik ekuilibrium pada model matematika viroterapi yaitu E0(0; 0; 0), E1(K; 0; 0) dan E2. Dari model yang dibahas ukuran ledakan virus, selektivitas virus dari virus onkolitik dan ukuran tumor maksimum akan menentukan hasil dari viroterapi. Ini bermakna secara biologis. Semakin besar tumor, semakin banyak virus kuat diperlukan untuk melawannya.