Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Informatika: Jurnal Pengembangan IT

Comparison of Support Vector Machine and Naïve Bayes on Twitter Data Sentiment Analysis Styawati Styawati; Auliya Rahman Isnain; Nirwana Hendrastuty; Lili Andraini
Jurnal Informatika: Jurnal Pengembangan IT Vol 6, No 1 (2021): JPIT, Januari 2021
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v6i1.3245

Abstract

Twitter is a social media that is widely used by the public. Twitter social media can be used to express opinions or opinions about an object. This shows that there is a huge opportunity for data sources, so they can be used for sentiment analysis. There are many algorithms for performing sentiment analysis, including Support Vector Machine (SVM) and Naive Bayes (NB). Because of the many opinions regarding the performance of the two methods, the researcher is interested in classifying the data using the SVM and NB methods. The data used in this study is data on public opinion regarding the Covid-19 vaccination policy. The first classification process is carried out by the SVM method using various kernels. After getting the highest accuracy result, then the accuracy result is compared with the accuracy value from the NB method classification results.
Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine Styawati Styawati; Nirwana Hendrastuty; Auliya Rahman Isnain
Jurnal Informatika: Jurnal Pengembangan IT Vol 6, No 3 (2021): JPIT, September 2021
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v6i3.2870

Abstract

Program kartu prakerja diluncurkan pada tahun 2020 melalui peraturan Presiden Nomor 36 tahun 2020 tentang Pengembangan Kompetensi Kerja melalui Program Kartu Pra-Kerja. Maraknya pembahasan program kartu prakerja di twitter membuat penulis tertarik untuk menganalisa sentimen  masyarakat Indonesia terhadap Program kartu Prakerja tentang trobosan upaya pemerintah mengatasi penganguran dan korban PHK tenaga kerja dengan keyword “prakerja”. Sentimen yang digunakan adalah positif, negatif, dan netral. Metode yang digunakan untuk menganalisis opini masyarakat dengan data yang diperoleh pada sosial media twitter menggunakan Support Vector Machine (SVM). Sedangkan untuk mengukur kinerja klasifikasi SVM menggunakan metode Confusion Matrix. Pada penelitian ini dilakukan perbandingan dua kernel yaitu linear dengan RBF. Hasil evaluasi yang dilakukan pada nilai akurasi kernel linear 98.67%, precission 98%, recall 99%, dan F1-Score 98%, sedangkan pada nilai akurasi kernel RBF 98.34%, precission 97%, recall 98%, F1-Score 98%, dapat disimpulkan bahwa sentimen masyarakat dari pengguna twitter terhadap program kartu prakerja dimasa pandemi lebih condong ke netral sebesar 98,34%. Berdasarkan hasil evaluasi yang dilakukan pada nilai akurasi kernel linear menghasilkan nilai akurasi 98.67%, sedangkan kernel RBF menghasilkan akurasi 98.34%. Maka dari sisi akurasi kernel linear lebih akurat dari pada kernel RBF.