Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Malcom: Indonesian Journal of Machine Learning and Computer Science

Analisis Sentimen Masyarakat Mengenai Gerakan Childfree di Media Sosial X Menggunakan Algoritma NBC dan SVM: Sentiment Analysis of Childfree Campaign on X Social Media Using NBC and SVM Algorithms Putra, Moh Azlan Shah; Permana, Inggih; Afdal, M.
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 4 (2024): MALCOM October 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i4.1356

Abstract

Anak merupakan salah satu entitas yang umum dalam membentuk sebuah keluarga, namun dalam beberapa tahun kebelakang muncul pembahasan mengenai childfree. Dengan banyaknya perdebatan pro-kontra mengenai childfree, perlu dilakukannya sentimen analisis terkait isu ini. Penelitian ini bertujuan untuk menganalisis sentimen masyarakat mengenai gerakan childfree di media sosial X menggunakan algoritma Naïve Bayes Classifier (NBC) dan Support Vector Machine (SVM). Sentimen dibagi menjadi 3 kelas yaitu positif, negatif, dan netral. Penelitian ini mengumpulkan data dengan crawling data pada media sosial X dengan keyword childfree. Data yang diperoleh merupakan data teks mentah sehingga dibutuhkan tahap pra proses. Tahap pra proses yang dilakukan adalah tokenizing, case folding, filter stopword, stemming, TF-IDF, dan data balancing. Berdasarkan simulasi, performa algoritma NBC adalah: akurasi = 56,36%, presisi = 56,41%, dan recall = 56,35%, sedangkan performa algoritma SVM adalah: akurasi 76,12%, presisi 76,36%, dan recall 76,13%. Sehingga dapat disimpulkan bahwa SVM memiliki performa yang lebih baik dari pada NBC pada analisis sentimen di penelitian ini.