Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Control Systems and Optimization Letters

Impact of Inertial and External Forces on Joint Dynamics of Robotic Manipulator: Experimental Insights Sharkawy, Abdel-Nasser
Control Systems and Optimization Letters Vol 3, No 1 (2025)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/csol.v3i1.163

Abstract

In this paper, the effect of the inertial and external forces applied on the links of the robotic manipulator is studied and investigated on the manipulator joints’ parameters through experimental analysis. For this investigation and experiments, KUKA LWR manipulator is used and structured as a 2-DOF manipulator. Experimental work is carried out by commanding a sinusoidal joint motion to the two joints of the manipulator. Different scenarios are studied such as motion with free of collisions, motion with collision on the link between the two joints of the manipulator, motion with collision on the end-effector, and motions with different constant joint speeds. The diagrams of the position, velocity, acceleration, and torque of the manipulator joints are obtained and recorded from KUKA robot controller and then investigated and evaluated. The results reveal that during a motion free of collision, small spikes are found on the signals of the joint position, velocity, acceleration, and torques. These spikes resulted from the inertial forces applied on the joint. During a motion with collision, the signals of joint position, velocity, acceleration, and torque are highly affected due to the collision, inertial forces, and friction. During a collision on the end-effector, the torques of both joints are highly affected. During a collision on a link between the two joints, the torque of the first joint is highly affected, and the torque of the second joint is slightly affected. When the speed of the joint is increased, the torque signal is highly affected. These findings provide insights into the dynamic behavior of robotic manipulators under external forces, with implications for improving control algorithms and collision detection systems.
Ensuring Safety in Human-Robot Cooperation: Key Issues and Future Challenges Sharkawy, Abdel-Nasser; Mahmoud, Khaled H.; Abdel-Jaber, Gamal T.
Control Systems and Optimization Letters Vol 2, No 3 (2024)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/csol.v2i3.154

Abstract

Human-robot cooperation (HRC) is becoming increasingly essential in many different sectors such as industry, healthcare, agriculture, and education. This cooperation between robot and human has many advantages such as increasing and boosting productivity and efficiency, executing the task easily, effectively, and in a fast time, and minimizing the efforts and time. Therefore, ensuring safety issues during this cooperation are critical and must be considered to avoid or minimize any risk or danger whether for the robot, human, or environment. Risks may be such as accidents or system failures. In this paper, an overview of the safety issues of human-robot cooperation is discussed. The main key challenges in robotics safety are outlined and presented such as collision detection and avoidance, adapting to unpredictable human behaviors, and implementing effective risk mitigation strategies. The difference between industrial robots and cobots is illustrated. Their features and safety issues are also provided. The problem of collision detection or avoidance between the robot and environment is defined and discussed in detail. The result of this paper can be a guideline or framework to future researchers during the design and the development of their safety methods in human-robot cooperation tasks. In addition, it shapes future research directions in safety measures.
DC to AC Inverter Prototype for Small Scale Power Supply with SPWM Method Listyantoro, Fiki; Ma'arif, Alfian; Sharkawy, Abdel-Nasser; Marhoon, Hamzah M.
Control Systems and Optimization Letters Vol 1, No 2 (2023)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/csol.v1i2.24

Abstract

Inverter is a device to convert Dc current voltage into AC current voltage. In this article, the inverter is designed using the H-Bridge configuration. The advantage of this configuration is that there is no need for diodes and capacitors to balance the voltage. The main components in designing this inverter are the Arduino Nano, the IR2103 IC, and also the MOSFET. The switching method used is SPWM with H-Bridge configuration which is controlled by 2 IC IR2103. Based on the test results, the output voltage of this inverter is 7.45 Volts. With a DC voltage of 12 Volts. With the use of an oscilloscope that is used to measure the output waveform from the switching results of the MOSFET, the signal is still in the form of a square wave. To make a sine wave, an inductor filter is needed which functions to produce a signal to become a sine wave, and to keep the frequency at 50Hz. The voltage generated from the step-up transformer can be adjusted by rotating the feedback trimpot. The resulting voltage is 88 Vac to 260 Vac. and can accommodate a maximum load of 250 Watts. This inverter is also equipped with a PZEM-004T sensor which functions to read voltage, current, frequency and power data.