Claim Missing Document
Check
Articles

Found 16 Documents
Search

Game Development of “Kwace Adat Bali” for The Socialization of Balinese Traditional Dress-Up Ethics Cahya Dewi, Dewa Ayu Indah; Murpratiwi, Santi Ika
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 5, No. 3, August 2020
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v5i3.1081

Abstract

Many young people have begun to violate the ethics of Balinese traditional dress up by using strict lacy blouse (kebaya), high split sarong (kamen), men sarong (kamen) that not taper on the tip and excessive accessories. Game of “Kwace Adat Bali” is expected as a means of socialization in Balinese traditional dress-up ethics appropriately. In this game, the Balinese traditional dress-up style is classified into three types, namely light traditional clothing (payas alit), middle traditional clothing (payas madya), and great traditional clothing (payas agung). The proposed method is Design Game Based-Learning Instructional Design (DGBL-ID) which is combined with a shuffle random algorithm to shuffle game items. The Game of “Kwace Adat Bali” has tested using alpha testing, beta testing, t-test, and game engagement questionnaire (GEQ). The alpha testing result was 100% game functionality has run suitable for the design. Beta testing shows that overall this game got a value of 77% from 65 respondents. There was a significant difference between user knowledge before and after playing the game of “Kwace Adat Bali” as indicated by t table value of 1.997, t value of 6.5, and the critical value of α = 0.05. The proposed method had an engagement rate of 8.7% higher than just using the DGBL-ID method in developing the game. Therefore, it can be concluded that the game feasible is considered as a new means of socialization in Balinese traditional dress up ethics for the younger generation.
Labeling of an intra-class variation object in deep learning classification Putri Alit Widyastuti Santiary; I Ketut Swardika; Ida Bagus Irawan Purnama; I Wayan Raka Ardana; I Nyoman Kusuma Wardana; Dewa Ayu Indah Cahya Dewi
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp179-188

Abstract

Machine orientation learning had demonstrated that deep learning (DL)-convolutional neural networks (CNNs) were robust image classifiers with significant accuracy. Although to been functional, DL scope classification as tight, well-defined as possible uses a 2-class object, for instance, cats and dogs. The DL classification faced many challenges, e.g., variation factors, the intra-class variation. This nature is presented in every object, its diversity of an object. The label was an exact given name of an intra-class variation object. Unfortunately, not every object had a specific name, in exceptionally high similarity inside the category. This paper explored those problems in flower plants’ taxonomy naming. In supervised learned of DL, image datasets musted labeled with a meaningful word or phrase that humans are familiar with, a taxonomy naming. Labeled with visual feature extraction brought a fully automatic classification. Flower Plumeria L labeling extracted from perspective dimension scale of petal flower which automatically obtained by contour detection, and peaks of blue green red (BGR) histogram channels from bins histogram after object masked. Dataset collected on photography workbench equipped with webcam and ring light. Results showed labels for intra-class variation of Plumeria L in form of dimension-scale and BGR-peaks. The result of this study presented a novelty in building datasets for intra-class variation for the DL classification.
GIS Pemetaan Gallery Kerajinan Seni Di Bali Berbasis Web Mobile Dewa Ayu Indah Cahya Dewi; I Nyoman Piarsa; I Made Sukarsa
Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi) Vol. 2 No. 3, Desember 2014
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Seni tidak dapat lepas dari kehidupan masyarakat Bali, bahkan beberapa desa di Bali sebagian besar mata pencaharian masyarakatnya sebagai pengrajin maupun seniman.Produk kerajinan seni yang dinilai sangat panjang rantai ekspornya memerlukan sosialisasi ataupun penyebaran informasi yang menarik pada suatu media informasi. Media informasi yang cukup tren saat ini yaitu media internet.Penelitian mengenai penggunaan mobile menyatakan masyarakat lebih memilih menggunakan dan membeli produk melalui perangkat mobile dari komputer desktop. Sistem yang dapat berjalan pada perangkat komputer desktop maupun mobile sekaligus dapat memberi manfaat yang besar. Aplikasi Web Mobile merupakan aplikasi yang berjalan didalam browser web pada perangkat mobile. Rancang bangun sistem informasi geografis/Geographic Information System (GIS) ini menampilkan lokasi geografis usaha-usaha kerajinan seni di daerah Bali dan mencari jarak terdekat menuju lokasi usaha para pemilik gallery serta produk kerajinan dan seni yang ada menggunakan perangkat mobile maupunkomputer. Keberadaan sistemini diharapkan dapat meningkatkan produktivitas para pengrajin maupun seniman Bali.Kata Kunci: Kerajinan Seni, Web Mobile, GIS.
Game Development of “Prokes” to Socialize the Prevention of Covid-19 Dewa Ayu Indah Cahya Dewi; Ngakan Putu Darma Yasa
Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi) Vol. 9, No. 2, August 2021
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JIM.2021.v09.i02.p08

Abstract

The level of awareness of the Indonesian people to orderly and comply with the implementation of health protocols is still very low. Special touch to young people is needed in socializing health protocols and new normal life. Game of “Prokes” is expected as a means for socialization of covid-19 prevention. The proposed method is agile method that is combined using shuffle random algorithm to randomize question in quiz of this game. The blackbox result was 100% functionality of the game has run well. There was a significant difference between user knowledge before and after playing the game of “Prokes” as indicated by t value of 2.297, t table value of 2.004, and the critical value of ? = 0.05. The proposed method had an GEQ result of 3.04. Therefore, the game feasible as a means of socialization in prevention covid-19 using health protocols and new normal for the young generations.
Usage analysis of SVD, DWT and JPEG compression methods for image compression Dewa Ayu Indah Cahya Dewi; I Made Oka Widyantara
Jurnal Ilmu Komputer Vol 14 No 2 (2021): Jurnal Ilmu Komputer
Publisher : Informatics Department, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JIK.2021.v14.i02.p04

Abstract

Through image compression, can save bandwidth usage on telecommunication networks, accelerate image file sending time and can save memory in image file storage. Technique to reduce image size through compression techniques is needed. Image compression is one of the image processing techniques performed on digital images with the aim of reducing the redundancy of the data contained in the image so that it can be stored or transmitted efficiently. This research analyzed the results of image compression and measure the error level of the image compression results. The analysis to be carried out is in the form of an analysis of JPEG compression techniques with various types of images. The method of measuring the compression results uses the MSE and PSNR methods. Meanwhile, to determine the percentage level of compression using the compression ratio calculation. The average ratio for JPEG compression was 0.08605, the compression rate was 91.39%. The average compression ratio for the DWT method was 0.133090833, the compression rate was 86.69%. The average compression ratio of the SVD method was 0.101938833 and the compression rate was 89.80%.
ANALISIS PERBANDINGAN HASIL PERAMALAN DATA TRANSAKSI PERUSAHAAN JASA DENGAN METODE DERET BERKALA Santi Ika Murpratiwi; Dewa Ayu Indah Cahya Dewi; Arik Aranta
Jurnal Teknologi Informasi dan Komputer Vol 7, No 2 (2021): Jurnal Teknologi Informasi dan Komputer
Publisher : LPPM Universitas Dhyana Pura

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRACTDecreasing profits is a frightening problem for auto repair service companies. Transactions that occur in the company are erratic every month, so the company needs a solution to stabilize the profits it gets. One solution to maintaining company profits is by analyzing transaction data through data forecasting. From the results of forecasting transaction data, the company can use it to prepare strategies related to the number of workers and production materials needed. Strategy preparation is assisted by the time series forecasting method applied to transaction data over the last 5 years. The methods analyzed include moving average, Single Exponential Smoothing, double exponential smoothing, and winter's method. The periodic series method will be compared based on the accuracy obtained. From this method, it is found that Single Exponential Smoothing is the most suitable forecasting method for the number of transactions that occur. This can be seen from the MAPE (Mean Absolute Percentage Error) value obtained at 8.0975 and the MAD (Mean Absolute Deviation) value of 4.1636. It can be concluded that Single Exponential Smoothing can be applied in forecasting transaction data of auto repair service companies and can be considered as a forecasting method in the development of a company's forecasting system going forward.Keywords: Forecasting, Time Series, Moving Average, Exponential Smoothing, WintersABSTRAKPenurunan keuntungan merupakan masalah yang menakutkan pada perusahaan jasa perbaikan kendaraan. Transaksi yang terjadi di perusahaan tidak menentu dalam setiap bulannya sehingga perusahaan membutuhkan solusi untuk menstabilkan keuntungan yang didapatkan. Salah satu solusi untuk mempertahankan profit perusahaan adalah dengan melakukan analisis terhadap data transaksi melalui peramalan data. Dari hasil peramalan data transaksi dapat dimanfaatkan perusahaan untuk menyiapkan strategi terkait jumlah tenaga kerja dan material produksi yang diperlukan. Penyusunan strategi dibantu dengan metode peramalan time series yang diterapkan pada data transaksi dalam kurun waktu 5 tahun terakhir. Metode yang dianalisis meliputi moving average, Single Exponential Smoothing, double exponential smoothing, dan winter’s method. Metode deret berkala tersebut akan dibandingkan berdasarkan akurasi yang didapatkan. Dari metode tersebut didapatkan bahwa Single Exponential Smoothing merupakan metode peramalan yang paling cocok dengan jumlah transaksi yang terjadi . Hal ini dilihat dari nilai MAPE (Mean Absolute Percentage Error) yang didapat sebesar 8,0975 dan nilai MAD (Mean Absolute Deviation) sebesar 4,1636. Dapat disimpulkan bahwa Single Exponential Smoothing dapat diterapkan dalam peramalan data transaksi perusahaan jasa perbaikan kendaraan dan dapat dipertimbangkan sebagai metode peramalan dalam pembangunan sistem peramalan perusahaan kedepannya.Kata Kunci : Peramalan, Deret Berkala, Moving Average, Eksponential Smoothing, Winters
Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali Dewa Ayu Indah Cahya Dewi; Dewa Ayu Kadek Pramita
Matrix : Jurnal Manajemen Teknologi dan Informatika Vol 9 No 3 (2019): MATRIX - Jurnal Manajemen Teknologi dan Informatika
Publisher : Unit Publikasi Ilmiah, P3M Politeknik Negeri Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (792.873 KB) | DOI: 10.31940/matrix.v9i3.1662

Abstract

Kerajinan merupakan salah satu bagian dari 14 lini industri kreatif yang cukup potensial mendorong kemajuan perekonomian Indonesia. Potensialnya, lini industri kerajinan menghasilkan data kerajinan berjumlah banyak dan berukuran besar sehingga perlu dilakukan analisis data mining dengan teknik pengelompokan data (clustering). Penelitian ini menggunakan metode k-medoid untuk mengelompokkan data kerajinan. Untuk menghasilkan hasil pengelompokan data atau clustering yang maksimal, perlu penentuan jumlah cluster yang tepat. Berbagai metode yang dapat digunakan untuk penentuan jumlah cluster yang tepat, yaitu metode elbow, koefisien silhouette, gap statistics, dan lainnya. Penelitian ini membandingkan metode elbow dan koefisien silhouette untuk menentukan jumlah cluster yang tepat sehingga menghasilkan kualitas cluster yang optimal. Metode yang digunakan untuk menguji hasil cluster adalah metode Davies Bouldin Index (DBI). Hasil pengujian clustering dengan metode elbow menggunakan nilai DBI menghasilkan nilai DBI sebesar 1,10. Sedangkan pada uji coba clustering dengan koefisien silhouette menghasilkan nilai DBI sebesar 1,06. Hal ini menunjukkan bahwa hasil clustering k-medoid dengan koefisien silhouette menghasilkan kualitas cluster lebih baik karena memiliki nilai DBI lebih rendah daripada clustering k-medoid dengan metode elbow. Adapun kebaharuan yang dipaparkan dalam penelitian ini adalah analisis data kerajinan di Bali menggunakan metode k-medoid, koefisien silhouette dan metode elbow. Belum ada penelitian yang menggunakan perbandingan koefisien silhouette dan metode elbow untuk memaksimalkan clustering k-medoid menggunakan Bahasa R.
Analisis Akurasi Nilai Peramalan Data Transaksi Perusahaan Jasa Menggunakan Kombinasi Metode K-Means Clustering dan Metode Deret Berkala Santi Ika Murpratiwi; Dewa Ayu Indah Cahya Dewi; Arik Aranta
Journal of Computer Science and Informatics Engineering (J-Cosine) Vol 5 No 1 (2021): June 2021
Publisher : Informatics Engineering Dept., Faculty of Engineering, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jcosine.v5i1.378

Abstract

Profit decline is a frightening problem for service companies. The solution to prevent this is by analyzing data transactions using data mining and forecasting. K-Means used to cluster the level of car damage based on the number of panels repaired and the duration of repaired. The results of K-Means used as material for analysis the best time-series method for transaction data. The methods analyzed include the moving average, single exponential smoothing, double exponential smoothing, and winter's method. Single exponential smoothing is the most suitable forecasting method with transaction data. Based on the MAPE value obtained for minor damage of 12.58%, forecasting for moderate damage of 16.83%, forecasting for major damage of 17.31%, and forecasting for overall data of 8.0975%. It concluded that single exponential smoothing can apply with K-Means clustering and the company can use it to make strategies to prepare the number of workers and production materials required.
OPTIMALISASI PENGELOMPOKKAN DATA TINGKAT HUNIAN HOTEL DENGAN ALGORITMA K-MEDOID Dewa Ayu Indah Cahya Dewi; Dewa Ayu Kadek Pramita
Jurnal Teknologi Informasi dan Komputer Vol 8, No 3 (2022): Jurnal Teknologi Informasi dan Komputer
Publisher : LPPM Universitas Dhyana Pura

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRACTHotel occupancy rates have decreased significantly during the Covid-19 pandemic. For the sake of increasing the economy in the hotel industry sector, an analysis of hotel occupancy data grouping is needed so that it can provide the right problem solving to increase hotel occupancy rates through promotions and other vouchers based on group characteristics. This research is in the form of grouping data on hotel occupancy rates in Indonesia using the K-Medoid clustering method and the Davies Bouldin Index (DBI). The selection of the K-Medoid clustering method is based on the K-medoid method which is not affected by noise and data outliers. Grouping the data with 9 clusters resulted in a better cluster quality seen from the minimum DBI value obtained of 1,003. The results of clustering are determined by the characteristics of the data in the cluster with a small dispersion/dispersion size because the standard deviation value is smaller than the mean value. The data used for clustering has a small variation. The cluster group with the lowest occupancy rate is located in the center of the cluster, namely January with an occupancy rate of 11.86%, February 21.66%, March 31.16%, April 17.12%, May 33.73% and June 26.88%. Areas classified as low occupancy groups are Aceh, West Sulawesi and Bali based on data from January 2022 to June 2022. These areas need to increase the number of hotel occupancy with various promotions.Keywords: K-medoid, Davies-Bouldin Index, Occupancy, Hotel.ABSTRAKTingkat hunian hotel mengalami penurunan signifikan selama pandemi Covid-19. Demi peningkatan perekonomian pada sektor industri perhotelan, diperlukan suatu analisis pengelompokkan data tingkat hunian hotel sehingga dapat memberikan pemecahan masalah yang tepat untuk meningkatkan tingkat hunian hotel melalui promosi dan voucher lainnya berdasarkan karakteristik kelompok. Penelitan ini berupa pengelompokkan data tingkat hunian hotel di Indonesia menggunakan metode clustering K-Medoid dan Davies Bouldin Index (DBI). Pemilihan metode clustering K-Medoid didasarkan pada metode K-medoid tidak terpengaruh noise dan pencilan data (outlier). Pengelompokkan data dengan 9 cluster menghasilkan kualitas cluster yang lebih baik dilihat dari nilai DBI minimum yang diperoleh sebesar 1.003. Hasil clustering ditentukan oleh karakteristik data yang di clustering dengan ukuran penyebaran/dispersi yang kecil karena nilai standar deviasi yang lebih kecil dari nilai mean. Data yang digunakan untuk clustering memiliki variasi yang kecil. Kelompok cluster yang memiliki tingkat hunian paling rendah terletak pada pusat cluster yaitu bulan januari dengan tingkat hunian 11.86%, Februari 21.66%, Maret 31.16%, april 17.12%, mei 33.73% dan juni 26.88%. Daerah yang tergolong kelompok hunian rendah yaitu Aceh, Sulawesi Barat dan Bali berdasarkan data dari Januari 2022 hingga Juni 2022 Daerah-daerah tersebut perlu dilakukan peningkatan jumlah hunian hotel dengan berbagai promosi.Kata Kunci : K-medoid, Davies-Bouldin Index, Hunian, Hotel.
Sistem kontrol otomatis dan monitoring temperatur ruangan menggunakan ESP-32 untuk mengendalikan motor DC pada motorized valve I Putu Gede Giri Satriawan; I Made Eri Setiadi; I Putu Bagus Wisnu Saputra; Wayan Nara Wisesa; Dewa Ayu Indah Cahya Dewi; I Gede Suputra Widharma; I Wayan Raka Ardana; I Wayan Teresna; I Wayan Sudiartha; I Nyoman Sugiarta
Journal of Applied Mechanical Engineering and Green Technology Vol. 3 No. 3 (2022): November 2022
Publisher : Unit Publikasi Ilmiah, P3M, Politeknik Negeri Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31940/jametech.v3i3.99-103

Abstract

Sistem kontrol otomatis dan monitoring temperature ruangan menggunakan ESP-32 untuk mengendalikan motor DC pada motorized valve yang mengatur aliran air dingin pada AHU (air handling unit) adalah rancangan alat yang dibuat untuk mengontrol suhu pada suatu ruangan. Dengan adanya alat kontrol temperatur otomatis menggunakan mikrokontroler ESP-32, maka dapat menjadikan alternatif untuk kontrol suhu pada suatu ruangan. Alat kontrol temperature otomatis menggunakan mikrokontroler ESP-32, suatu buah sensor suhu termokopel MAX6675 untuk membaca suhu pada supply ducting AHU serta menggerakkan motorized valve dari 0%, 50%, dan 100%. Komponen yang digunakan untuk mengatur pergerakan motorized valve tersebut adalah motor driver L298N. Motor driver L298N ini berfungsi sebagai pengatur tegangan output motor yang di mana tegangan output tersebut diubah menjadi gelombang PWM yang mengatur pergerakan motorized valve, sehingga motorized valve dapat terbuka dari 0%, 50%, dan 100% sesuai dengan pembacaan suhu dari sensor suhu.