Claim Missing Document
Check
Articles

Found 21 Documents
Search
Journal : ComEngApp : Computer Engineering and Applications Journal

A Deep Learning Approach to Integrate Medical Big Data for Improving Health Services in Indonesia Bambang Tutuko; Siti Nurmaini; Muhammad Naufal Rachmatullah; Annisa Darmawahyuni; Firdaus Firdaus
Computer Engineering and Applications Journal Vol 9 No 1 (2020)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (426.189 KB) | DOI: 10.18495/comengapp.v9i1.328

Abstract

Medical Informatics to support health services in Indonesia is proposed in this paper. The focuses of paper to the analysis of Big Data for health care purposes with the aim of improving and developing clinical decision support systems (CDSS) or assessing medical data both for quality assurance and accessibility of health services. Electronic health records (EHR) are very rich in medical data sourced from patient. All the data can be aggregated to produce information, which includes medical history details such as, diagnostic tests, medicines and treatment plans, immunization records, allergies, radiological images, multivariate sensors device, laboratories, and test results. All the information will provide a valuable understanding of disease management system. In Indonesia country, with many rural areas with limited doctor it is an important case to investigate. Data mining about large-scale individuals and populations through EHRs can be combined with mobile networks and social media to inform about health and public policy. To support this research, many researchers have been applied the Deep Learning (DL) approach in data-mining problems related to health informatics. However, in practice, the use of DL is still questionable due to achieve optimal performance, relatively large data and resources are needed, given there are other learning algorithms that are relatively fast but produce close performance with fewer resources and parameterization, and have a better interpretability. In this paper, the advantage of Deep Learning to design medical informatics is described, due to such an approach is needed to make a good CDSS of health services.
Automated ECG Waveform Annotation Based on Stacked Long Short-Term Memory Annisa Darmawahyuni; Siti Nurmaini; Muhammad Naufal Rachmatullah
Computer Engineering and Applications Journal Vol 9 No 2 (2020)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (425.63 KB) | DOI: 10.18495/comengapp.v9i2.341

Abstract

The classification of electrocardiogram (ECG) waveform segmentation techniques can be difficult due to physiological variation of heart rate and different characteristics of the different ECG waves in terms of shape, frequency, amplitude, and duration. The P-wave, PR-segment, QRS-complex, ST-segment, and T-wave are extracted as the feature for classification algorithm to diagnose specified cardiac disorders. This requires the implementation of algorithms that identify specific points within the ECG wave. Some previous computational algorithms for automatic classification of ECG segmentation are proposed to overcome limitations of manual inspection of the ECG. This study presents new insight into the ECG semantic segmentation problem is surmounted by a deep learning approach for automatic ECG wave-form. Long short-term memory (LSTM) is proposed for this task. This experimental study has been performed for six different waveforms of ECG signal that represents cardiac disorders obtained from the Physionet: QT database. Overall, LSTM performance achieved accuracy, sensitivity, specificity, precision, F1-score, is 93.36%, 86.85%, 95.78%, 81.79%, and 83.09%, respectively.
Cloud-based ECG Interpretation of Atrial Fibrillation Condition with Deep Learning Technique Bambang Tutuko; Rossi Passarella; Firdaus Firdaus; Muhammad Naufal Rachmatullah; Annisa Darmawahyuni; Ade Iriani Sapitri; Siti Nurmaini
Computer Engineering and Applications Journal Vol 10 No 1 (2021)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (320.888 KB) | DOI: 10.18495/comengapp.v10i1.356

Abstract

The prevalent type of arrhythmia associated with an increased risk of stroke and mortality is atrial fibrillation (AF). It is a known priority to identify AF before the first complication occurs. No previous studies have explored the feasibility of conducting AF screening using a deep learning (DL) algorithm (integrated cloud-computing) telehealth surveillance system. Hence, we address this problem. The goal of this research was to determine the feasibility of AF screening using an embedded cloud-computing algorithm in nonmetropolitan areas using a telehealth surveillance system. By using a single-lead electrocardiogram (ECG) recorder, we performed a prospective AF screening study. Both ECG measurements were evaluated and interpreted by the cloud-computing algorithm and a cardiologist on the telehealth monitoring system. The proposed cloud-computing based on Convolutional Neural Network (CNN) algorithm for AF detection had an accuracy of 99% sensitivity of 98%, and specificity of 99%. The overall satisfaction performance for the process of AF screening, and it is feasible to conduct AF screening by using a telehealth monitoring system containing an embedded cloud-computing algorithm.
Segmentation of Squamous Columnar Junction on VIA Images using U-Net Architecture Akhiar Wista Arum; Siti Nurmaini; Dian Palupi Rini; Patiyus Agustiansyah; Muhammad Naufal Rachmatullah
Computer Engineering and Applications Journal Vol 10 No 3 (2021)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (319.534 KB) | DOI: 10.18495/comengapp.v10i3.387

Abstract

Cervical cancer is the second most common cancer that affects women, especially in developing countries including Indonesia. Cervical cancer is a type of cancer found in the cervix, precisely in the squamous columnar junction (SCJ). Early screening for cervical cancer can be reduce the risk of cervical cancer. One of the popular screening tool methods for the detection of cervical pre-cancer is the Visual Inspection with Acetic Acid (VIA) method. This is due to the level of effectiveness, convenience and low cost. This paper proposes a method for the detection and segmentation of the SCJ region on VIA images using U-Net. This study is the first research conducted using the CNN method to perform segmentation tasks in the SCJ region. The best performance results are shown from the Pixel Accuracy, Mean IoU, Mean Accuracy, Dice coefficient, Precision and Sensitivity values, namely 90.86%, 56.5%, 75.69%, 34.09%, 41.24%, and 56.91%. Keywords: Cervical Pre-cancer, Screening VIA, SCJ, U-Net.
Multiclass Segmentation of Pulmonary Diseases using Convolutional Neural Network Muhammad Arnaldo; Siti Nurmaini; Hadipurnawan Satria; Muhammad Naufal Rachmatullah
Computer Engineering and Applications Journal Vol 11 No 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (391.064 KB) | DOI: 10.18495/comengapp.v11i1.397

Abstract

Pulmonary disease has affected tens of millions of people in the world. This disease has also become the cause of death of millions of its sufferers every year. In addition, lung disease has also become the cause of other respiratory complications, which also causes the death of the sufferer. The diagnosis of pulmonary diseases through medical imaging is a significant challenge in computer vision and medical image processing. The difficulty is due to the wide variety in infected areas' shape, dimension, and location. Another challenge is to differentiate one lung disease from the other. Discriminating pulmonary diseases is a notable concern in the diagnosis of pulmonary disease. We have adopted the deep learning convolutional neural network in this study to address these challenges. Seven models were constructed using the Mask Region-based Convolutional Neural Network (Mask-RCNN) architecture to detect and segment infected areas within the lung region from CT scan imagery. The evaluation results show that the best model obtained scores of 91.98%, 85.25%, and 93.75% for DSC, MIoU, and mAP, respectively. The segmentation results are then visualized.
Identification of Indonesian Authors Using Deep Neural Networks Firdaus Firdaus; Irvan Fahreza; Siti Nurmaini; Annisa Darmawahyuni; Ade Iriani Sapitri; Muhammad Naufal Rachmatullah; Suci Dwi Lestari; Muhammad Fachrurrozi; Mira Afrina; Bayu Wijaya Putra
Computer Engineering and Applications Journal Vol 11 No 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (402.465 KB) | DOI: 10.18495/comengapp.v11i1.398

Abstract

Author Name Disambiguation (AND) is a problem that occurs when a set of publications contains ambiguous names of authors, i.e. the same author may appear with different names (synonyms) in other published papers, or author (authors) who may be different who may have the same name (homonym). In this final project, we will design a model with a Deep Neural Network (DNN) classifier. The dataset used in this final project uses primary data sourced from the Scopus website. This research focuses on integrating data from Indonesian authors. Parameters accuracy, sensitivity and precision are standard benchmarks to determine the performance of the method used to solve AND problems. The best DNN classification model achieves 99.9936% Accuracy, 93.1433% Sensitivity, 94.3733% Precision. Then for the highest performance measurement, the case of Non Synonym-Homonym (SH) has 99.9967% Accuracy, 96.7388% Sensitivity, and 97.5102% Precision.
Classification of Atrial Fibrillation In ECG Signal Using Deep Learning Muhammad Fachrurrozi; Muhammad Naufal Rachmatullah; Raihan Mufid Setiadi
Computer Engineering and Applications Journal Vol 12 No 3 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i3.439

Abstract

Atrial fibrillation is a type of heart rhythm disorder that most often occurs in the world and can cause death. Atrial fibrillation can be diagnosed by reading an Electrocardiograph (ECG) recording, however, an ECG reading takes a long time and requires specialists to analyze the type of signal pattern. The use of deep learning to classify Atrial Fibrillation in ECG signals was chosen because deep learning has 10% higher performance compared to machine learning methods. In this research, an application for classification of Atrial Fibrillation was developed using the 1-Dimentional Convolutional Neural Network (CNN 1D) method. There are 6 configurations of the 1D CNN model that were developed by varying the configuration on the learning rate and batch size. The best model obtained 100% accuracy, 100% precision, 100% recall, and 100% F1 Score.
Forecasting Of Intensive Care Unit Patient Heart Rate Using Long Short-Term Memory Firdaus Firdaus; Muhammad Fachrurrozi; Siti Nurmaini; Bambang Tutuko; Muhammad Naufal Rachmatullah; Annisa Darmawahyuni; Ade Iriani Sapitri; Anggun Islami; Masayu Nadila Maharani; Bayu Wijaya Putra
Computer Engineering and Applications Journal Vol 12 No 3 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i3.457

Abstract

Cardiac arrest remains a critical concern in Intensive Care Units (ICUs), with alarmingly low survival rates. Early prediction of cardiac arrest is challenging due to the complexity of patient data and the temporal nature of ICU care. To address this challenge, we explore the use of Deep Learning (DL) models, specifically Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU), for forecasting ICU patient heart rates. We utilize a dataset extracted from the MIMIC III database, which poses the typical challenges of irregular time series data and missing values. Our research encompasses a comprehensive methodology, including data preprocessing, model development, and performance evaluation. Data preprocessing involves regularizing and imputing missing values, as well as data normalization. The dataset is partitioned into training, testing, and validation sets to facilitate model training and evaluation. Fine-tuning of hyperparameters is conducted to optimize each DL architecture's performance. Our results reveal that the GRU architecture consistently outperforms LSTM and BiLSTM in predicting heart rates, achieving the lowest RMSE and MAE values. The findings underscore the potential of DL models, particularly GRU, in enhancing the early detection of cardiac events in ICU patients.
Segmentation of Skin Lesions Using Convolutional Neural Networks Firdaus Firdaus; Muhammad Fachrurrozi; Muhammad Naufal Rachmatullah; Dewi Chayanti; Annisa Darmawahyuni; Anggun Islami; Ade Iriani Sapitri; Bambang Tutuko
Computer Engineering and Applications Journal Vol 12 No 1 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i1.466

Abstract

Skin lesions play a crucial role as the initial clinical symptoms of diseases such as chickenpox and melanoma. By employing digital image processing techniques for skin cancer detection, it becomes feasible to diagnose these conditions without the need for physical contact with the skin. However, the automatic analysis of dermoscopy images, which exhibit characteristics like residue (hair and ruler markers), indistinct borders, varying contrast, and variations in shape and color, poses significant challenges. To overcome these difficulties, effective hair removal through segmentation has been explored extensively in the literature. In this study, we present a skin lesion segmentation system developed using the Convolutional Neural Networks (CNNs) method with the U-Net architecture. The model was constructed and evaluated using the HAM10000 Dataset. The results achieved by the best-performing model were outstanding, with a Pixel Accuracy, Intersection over Union (IoU), and F1 Score of 95.89%, 90.37%, and 92.54%, respectively
Video Based Fish Species Detection Using Faster Region Convolution Neural Network Muhammad Naufal Rachmatullah; Akhtiar W Arum
Computer Engineering and Applications Journal Vol 12 No 2 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i2.467

Abstract

Fish recognition and classification represent significant challenges in marine biology and agriculture, promising fields for advancing research. Despite advancements in real-time data collection, underwater fish recognition and classification still require improvement due to challenges such as variations in fish size and shape, image quality issues, and environmental changes. Feature learning approaches, particularly utilizing convolutional neural networks (CNNs), have shown promise in addressing these challenges. This study focuses on video-based fish species classification, employing a feature learning-based extraction method through CNNs. The process involves two main stages: detection and classification. To address the detection and classification in video a Faster Region Convolutional Neural Network (RCNN) with transfer learning techniques are applied, achieving a mean average precision of 84% for detection and classification tasks. These techniques offer promising avenues for enhancing fish recognition and classification in diverse environments
Co-Authors Abdurahman Ade Iriani Sapitri Ade Iriani Sapitri Ahmad Rifai Ahmad Rizky Fauzan Akhiar Wista Arum Akhtiar W Arum Al Farissi Al-Filambany, Muhammad Gibran Ananda, Dea Agustria Andre Herviant Juliano Anggun Islami Anggun Islami Anita Desiani Annisa Darmawahyuni Annisa Darmawahyuni Armansyah, Risky Arnaldo, Muhammad Arum, Akhiar Wista Bambang Tutuko Bambang Tutuko Bambang Tutuko Bayu Wijaya Putra Darmawahyuni, Annisa Darmawahyuni, Annisa Desty Rodiah Dewi Chayanti Dian Palupi Rini Dian Palupi Rini Dinda Lestarini Dite Geovanni Erwin Erwin Erwin, Erwin Fadel Muhammad, Fadel Fahreza, Irvan Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Geovanni, Dite Hadipurnawan Satria Hanif Habibie Supriansyah Irvan Fahreza Islami, Anggun Kurniawan, Anggy Tias M. Fachrurrozi . Maharani, Masayu Nadila Masayu Nadila Maharani Mira Afrina Muhammad Akmal Shidqi Muhammad Arnaldo Muhammad Fachrurrozi Muhammad Fachrurrozi Muhammad Gibran Al-Filambany Muhammad Irham Rizki Fauzi Muhammad Taufik Roseno, Muhammad Taufik Novi Yusliani Patiyus Agustiansyah PATIYUS AGUSTIANSYAH, PATIYUS Putri Mirani Rahmat Fadli Isnanto Raihan Mufid Setiadi Raihan Mufid Setiadi Renny Amalia Pratiwi Reza Firsandaya Malik Ricy Firnando Ricy Firnando Rossi Passarella Samsuryadi Samsuryadi Sapitri, Ade Iriani Saputra, Tommy Sari, Ririn Purnama Sarifah Putri Raflesia, Sarifah Putri Sastradinata, Irawan Setiadi, Raihan Mufid Shidqi, Muhammad Akmal Siti Nurmaini Sri Indra Maiyanti Sri Indra Maiyanti Suci Dwi Lestari Suci Dwi Lestari Sugandi Yahdin Sukemi Sukemi Sukemi Sutarno Sutarno Sutarno Syaputra, Hadi Tio Artha Nugraha Varindo Ockta Keneddi Putra Yesi Novaria Kunang