Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Informatics, Information System, Software Engineering and Applications (INISTA)

PENGELOMPOKAN DATA PERSEDIAAN OBAT MENGGUNAKAN PERBANDINGAN METODE K-MEANS DENGAN HIERARCHICAL CLUSTERING SINGLE LINKAGE Rahmatika Diana Firdaus; Tri Ginanjar Laksana; Rima Dias Ramadhani
Journal of INISTA Vol 2 No 1 (2019): November 2019
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/inista.v2i1.87

Abstract

Kesehatan merupakan hak asasi manusia sekaligus investasi bagi keberhasilan pembangunan bangsa Indonesia. Salah satu faktor penting di dunia kesehatan adalah tersedianya obat-obatan untuk nantinya disalurkan ke seluruh wilayah Indonesia melalui badan organisasi kesehatan milik pemerintah secara merata dan berkelanjutan. Fungsi obat yaitu sebagai upaya pencegahan, penyembuhan, maupun peningkatan kesehatan bagi manusia. Obat juga merupakan bahan yang diatur oleh pemerintah dalam hal ini adalah Badan Pengawasan Obat dan Makanan (BPOM). Di era modern seperti saat ini, kita mengenal dengan istilah Data Mining. Dalam perkembangannya, data mining berhubungan erat dengan analisa data, maka dari itu data mining mampu mengolah dan mengelompokan data dalam jumlah yang besar berdasarkan kesamaan dalam sekumpulan data. Algoritma K-Means merupakan metode pengelompokan yang mudah digunakan. Pada proses penentuan titik pusat klaster (centroid) awal merupakan kelemahan bagi K-Means karena sifatnya yang acak. Algoritma Hierarchical Clustering (HCC) Single Linkage pada penentuan titik pusat klaster (centroid) memiliki sifat yang konsisten dan kompleks. Dari 204 data dan variabel yang akan diolah, kedua algoritma tersebut akan mendapatkan klaster optimal data pada kelompok klaster C1 yaitu obat dengan pemakaian lambat dan klaster C2 yaitu obat dengan pemakaian cepat dan membandingkan nilai validitasnya. Hasil dari penelitian ini menunjukan bahwa algoritma HCC Single linkage mampu memberikan hasil yang terbaik dengan validitas Sillhoutte Index (SI) sebesar 0.8629 sedangkan algoritma K-Means mendapatkan nilai validitas SI sebesar 0.8414.
LOGIKA FUZZY SUGENO UNTUK PENGAMBILAN KEPUTUSAN DALAM PENJADWALAN DAN PENGINGAT SERVICE SEPEDA MOTOR Ariesta Dwi Saputri; Rima Dias Ramadhani; Rifki Adhitama
Journal of INISTA Vol 2 No 1 (2019): November 2019
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/inista.v2i1.95

Abstract

Data pengguna sepeda motor tahun 2016 berdasarkan Badan Pusat Statistik terdapat 105.150.082 pengguna di Indonesia . Angka ini adalah angka yang terbanyak dari semua total kendaraan. Menurut katadata.co.id, terdapat 98.000 kali kecelakan yang terjadi pada tahun 2017. Hal ini didominasi oleh kendaraan khususnya sepeda motor. Kecelakan yang ditimbulkan disebabkan oleh kelalaian pengguna sepeda motor dalam merawat motornya tersebut. Upaya dalam mengantisipasi terjadinya kecelakaan salah satunya adalah melakukan pengecekan kendaraan bermotor secara rutin. Menurut buku panduan sepeda motor, bahwa setiap kali motor yang digunakan wajib untuk melakukan pengecekan minimal 3 bulan sekali agar motor tetap pada performa utamanya. Metode yang digunakan untuk pengambilan keputusan dalam penjadwalan dan pengingat menggunakan metode fuzzy sugeno. Fuzzy merupakan suatu cara untuk memetakan suatu ruang input ke dalam suatu ruang output . Solusi yang ditawarkan pada penelitian ini akan aplikasi mobile yang dikhususkan untuk pengguna sepeda motor dalam melakukan perawatan rutin sebagai penjadwalan dan pengingat. Hasil yang didapatkan Berdasarkan pengujian manual dan pengujian melalui system yakni 16 siap service dan 14 tidak siap service. Presentase keakuratan system dengan perhitungan manual 100% sama dengan perhitngan system. Prensentasi pengaruh terhadap perawatan motor adalah 88.27% setuju terhadap pembuatan aplikasi ini untuk perawatan motor terhadap kecelakaan motor.