Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : MIND (Multimedia Artificial Intelligent Networking Database) Journal

Klasifikasi Kerusakan Mutu Tomat Berdasarkan Seleksi Fitur Menggunakan K-Nearest Neighbor NISKE ELMY PAULINA; ZILVANHISNA EMKA FITRI; ABDUL MADJID; ARIZAL MUJIBTAMALA NANDA IMRON
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 6, No 2 (2021): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v6i2.144-154

Abstract

AbstrakTomat (Lycopersicum esculentum Mill.) merupakan satu komoditas unggulan pertanian karena penjualan jangka panjangnya baik. Menurunnya jumlah produktivitas dan mutu tomat disebabkan oleh curah hujan yang tinggi, cuaca dan budidaya yang tidak baik sehingga buah tomat menjadi busuk, retak, dan timbul bercak. Penyuluhan terkait peningkatan mutu tomat dinilai kurang efektif sehingga dibutuhkan sebuah sistem identifikasi kerusakan mutu buah tomat yang mampu memberikan edukasi kepada petani. Penelitian ini adalah pengembangan penelitian sebelumnya, untuk mendapatkan citra segmentasi dan ekstraksi fitur digunakan penggunaan contrast stretching dan deteksi tepi sobel. Namun kedua teknik tersebut diganti penggunaan operasi citra negatif. Didapatkan fitur yang optimal adalah gabungan fitur morfologi dan pada masing-masing sudut berdasarkan seleksi fitur. Persentasi akurasi metode KNN pada pelatihan sebesar 86.6% sedangkan akurasi pengujiannya sebesar 70%.Kata kunci: kerusakan mutu, tomat, seleksi fitur, K-Nearest NeighborAbstractTomato (Lycopersicum esculentum Mill.) is one of the leading agricultural commodities because of its good long-term sales. The decrease in the amount of productivity and quality of tomatoes is caused by high rainfall, bad weather and cultivation so that the tomatoes become rotten, cracked, and have spots. Counseling related to improving the quality of tomatoes is considered ineffective so that a system for identifying damage to the quality of tomatoes is needed that is able to provide education to farmers. This study is a development of previous research, to obtain segmented images and feature extraction using contrast stretching and sobel edge detection. However, both techniques were replaced by using negative image operations. The optimal feature is a combination of morphological features and correlations at each angle based on feature selection. The percentage of accuracy of the KNN method in training is 87%, while the accuracy in the testing is 70%.Keywords: quality damage, tomato, feature selection, K-Nearest Neighbo
Media Pembelajaran Pengenalan Buah (Fruits Zone) untuk Anak KB Menggunakan Deep Learning KOMARIAH, SITI INGEFATUL; PUTRI, DESTI FITRI AISYAH; PERMATASARI, INTAN; FITRI, ZILVANHISNA EMKA; ATMADJI, ERY SETIYAWAN JULLEV; WIDIASTUTI, RESKI YULINA; IMRON, ARIZAL MUJIBTAMALA NANDA
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 9, No 1 (2024): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v9i1.13-24

Abstract

ABSTRAK Keterbatasan media pembelajaran dan metode pembelajaran yang masih terpusat pada kemampuan guru menjadi kendala bagi Pos Alamanda 105 Jumerto, Jember. Dibutuhkan sebuah media pembelajaran yang interaktif dan dapat diakses dimanapun untuk meningkatkan kemampuan siswa khususnya dalam pengenalan buah. Solusinya, peneliti mengembangkan media pembelajaran interaktif pengenalan buah pada anak usia dini. Metode yang digunakan adalah Deep Learning (CNN) dengan arsitektur yaitu Resnet18. Arsitektur Resnet-18 dipilih karena tidak menghilangkan gradien dan fitur citra meski layer yang digunakan semakin dalam, sehingga connected layer dapat mengenali objek dengan akurat. Penelitian ini menggunakan 21 jenis buah populer dan buah unik yang dilengkapi fitur suara berbahasa Indonesia dan Bahasa Inggris. Jumlah data sebanyak 2100 citra buah dengan learning rate sebesar 0.0002 dan maksimal epoch sebesar 100 mampu mengklasifikasikan buah dengan tingkat akurasi sebesar 96% (pelatihan sistem) dan 95% (pengujian sistem). Kata Kunci: Media Pembelajaran, Fruits Zone , Deep Learning, ResNet18 ABSTRACT Limitations in learning media and teaching methods that are still centered on teachers' abilities pose challenges for Pos Alamanda 105 in Jumerto, Jember. An interactive learning media accessible anywhere is needed to enhance students' abilities, especially in fruit recognition. The solution is researchers developing an interactive early childhood fruit recognition learning media. The method used is Deep Learning (CNN) with the Resnet18 architecture. Resnet-18 architecture is chosen because it preserves gradients and image features even as the layers go deeper, allowing the connected layer to accurately recognize objects. This study covers 21 popular and unique fruits with voice features in Indonesian and English. With 2100 fruit images, a learning rate of 0.0002, and a maximum epoch of 100, the system achieves a classification accuracy of 96% (training) and 95% (testing).Keywords: Learning Media, Fruits Zone , Deep Learning, ResNet18