Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

A Minimum Cloud Cover Mosaic Image Model of the Operational Land Imager Landsat-8 Multitemporal Data using Tile based Ratih Dewanti Dimyati; Projo Danoedoro; Hartono Hartono; Kustiyo Kustiyo
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 1: February 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (915.039 KB) | DOI: 10.11591/ijece.v8i1.pp360-371

Abstract

The need for remote sensing minimum cloud cover or cloud free mosaic images is now increasing in line with the increased of national development activities based on one map policy. However, the continuity and availability of cloud and haze free remote sensing data for the purpose of monitoring the natural resources are still low. This paper presents a model of medium resolution remote sensing data processing of Landsat-8 uses a new approach called mosaic tile based model (MTB), which is developed from the mosaic pixel based model (MPB) algorithm, to obtain an annual multitemporal mosaic image with minimum cloud cover mosaic imageries. The MTB model is an approach constructed from a set of pixels (called tiles) considering the image quality that is extracted from cloud and haze free areas, vegetation coverage, and open land coverage of multitemporal imageries. The data used in the model are from Landsat-8 Operational Land Imager (OLI) covering 10 scenes area, with 2.5 years recording period from June 2015 to June 2017; covered Riau, West Sumatra and North Sumatra Provinces. The MTB model is examined with tile size of 0.1 degrees (11x11 km2), 0.05 degrees (5.5x5.5 km2), and 0.02 degrees (2.2x2.2 km2). The result of the analysis shows that the smallest tile size 0.02 gives the best result in terms of minimum cloud cover and haze (or named clear area). The comparison of clear area values to cloud cover and haze for three years (2015, 2016 and 2017) for the three mosaic images of MTB are 68.2%, 78.8%, and 86.4%, respectively.
Comparing canopy density measurement from UAV and hemispherical photography: an evaluation for medium resolution of remote sensing-based mapping Umarhadi, Deha Agus; Danoedoro, Projo
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 1: February 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i1.pp356-364

Abstract

UAV and hemispherical photography are common methods used in canopy density measurement. These two methods have opposite viewing angles where hemispherical photography measures canopy density upwardly, while UAV captures images downwardly. This study aims to analyze and compare both methods to be used as the input data for canopy density estimation when linked with a lower spatial resolution of remote sensing data i.e. Landsat image. We correlated the field data of canopy density with vegetation indices (NDVI, MSAVI, and AFRI) from Landsat-8. The canopy density values measured from UAV and hemispherical photography displayed a strong relationship with 0.706 coefficient of correlation. Further results showed that both measurements can be used in canopy density estimation using satellite imagery based on their high correlations with Landsat-based vegetation indices. The highest correlation from downward and upward measurement appeared when linked with NDVI with a correlation of 0.962 and 0.652, respectively. Downward measurement using UAV exhibited a higher relationship compared to hemispherical photography. The strong correlation between UAV data and Landsat data is because both are captured from the vertical direction, and 30 m pixel of Landsat is a downscaled image of the aerial photograph. Moreover, field data collection can be easily conducted by deploying drone to cover inaccessible sample plots.