Claim Missing Document
Check
Articles

Found 39 Documents
Search

PENYUSUNAN BASIS DATA SPASIAL SUMBERDAYA AIR MELALUI PARTISIPASI MASYARAKAT (Studi Kasus di Desa Kepuharjo Kecamatan Cangkringan Kabupaten Sleman Provinsi Daerah Istimewa Yogyakarta) Widayani, Prima
Jurnal Gea Vol 11, No 1 (2011)
Publisher : Rizki Offset

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The preparation of spatial database of water resources in the village of Kepuharjo Cangkringan Sleman District implemented through local community empowerment. The objective is to assess the potential and utilization of existing surface water resources in the village of Kepuharjo, District Cangkringan based database of water resource potential. Based on results of the discussion, data collection, field survey and data analysis conducted jointly with local communities showed that rain water and stream water that flowed through the pipe from the spring Bebeng and Kalikuning become the main surface water source Kepuharjo Village residents. Surface water potential is very high especially in the rainy season and has not been used optimally and in August and September the village of Kepuharjo experiencing critical water. Keywords : database, water resources, community empowerment.
PENYUSUNAN BASIS DATA SPASIAL SUMBERDAYA AIR MELALUI PARTISIPASI MASYARAKAT (Studi Kasus di Desa Kepuharjo Kecamatan Cangkringan Kabupaten Sleman Provinsi Daerah Istimewa Yogyakarta) Widayani, Prima
Jurnal Pendidikan Geografi Gea Vol 11, No 1 (2011)
Publisher : Indonesia University of Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/gea.v11i1.1657

Abstract

The preparation of spatial database of water resources in the village of Kepuharjo Cangkringan Sleman District implemented through local community empowerment. The objective is to assess the potential and utilization of existing surface water resources in the village of Kepuharjo, District Cangkringan based database of water resource potential. Based on results of the discussion, data collection, field survey and data analysis conducted jointly with local communities showed that rain water and stream water that flowed through the pipe from the spring Bebeng and Kalikuning become the main surface water source Kepuharjo Village residents. Surface water potential is very high especially in the rainy season and has not been used optimally and in August and September the village of Kepuharjo experiencing critical water. Keywords : database, water resources, community empowerment.
PEMODELAN SPASIAL KERENTANAN WILAYAH TERHADAP PENYAKIT LEPTOSPIROSIS BERBASIS EKOLOGI Widayani, Prima; Kusuma, Dyah
Jurnal Geografi Vol 11, No 1 (2014): January 2014
Publisher : Jurnal Geografi

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Leptospirosis is an acute infectious disease that can infect humans and animalscaused by leptospira bacteria and classified as zoonotic pathogens. Outbreaks ofthe disease within a few years has been attacking people in Bantul. In the period2009 to March 2013 there have been 394 cases, based on these facts it isnecessary to mapping disease susceptibility regions to leptospirosis in order todetermine priority areas of treatment and prevention. Spatial pattern analysis ofspread of the disease leptospirosis is done by using a method Nearest NeighborDistance Average. Modelling the ecological mapping units using remote sensingdata to tap environmental data such as land use, soil texture, stream buffers, andthe buffers settlement with the visual interpretation method. Index models areused to create vulnerability models of leptospirosis disease. To test the accuracyof the data model is used the cases of leptospirosis which have plots in study field.Based on accuration test, it showed that there are 76 leptospirosis cases (or92.68%) layed on vulnerable area in Imogiri, Bantul and Jetis District. Spatialdistribution pattern analysis of the leptospirosis cases using average nearestneighbor distance methods showed that the distribution of the cases are groupedwith z score value is - 2.41.
PEMODELAN SPASIAL EPIDEMIOLOGI DEMAM BERDARAH DENGUE MENGGUNAKAN SISTEM INFORMASI GEOGRAFI DI KECAMATAN DEPOK KABUPATEN SLEMAN YOGYAKARTA Widayani, Prima
Jurnal Pendidikan Geografi Gea Vol 10, No 2 (2010)
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/gea.v10i2.1025

Abstract

The objective of this research is for developing a prototype of Dengue Haemorrhagic Fever Epidemiologic Spatial Modeling to define the irritable area rates for that disease. The research is conducted at Depok, Sleman, Yogyakarta.  The model’s made by GIS with overlaying 8 parameters: population density, the cleaning activity frequency of water vessel, waste management pattern, frequency of fogging, drainage condition, settlement pattern, distance settlement from river, and survillance. Each parameter’s analyzed by cross tabs analyze to see its correlation with the actual case.  The result from this analyze is used to give weighting factors for those parameters. The research finding show that 8 parameters have partial correlation with actual case of dengue fever. The result model is tested again with the actual dengue fever case.  As we can see from crosstab test ,the value of C (coefficient contingency) = 0,558.  So the research gives a meaningful test, and we can take conclusion that there’s a real correlation between dengue fever irritable model and actual dengue fever case.
PEMODELAN SPASIAL KERENTANAN WILAYAH TERHADAP PENYAKIT LEPTOSPIROSIS BERBASIS EKOLOGI Widayani, Prima; Kusuma, Dyah
Jurnal Geografi : Media Informasi Pengembangan dan Profesi Kegeografian Vol 11, No 1 (2014): January 2014
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jg.v11i1.8041

Abstract

Leptospirosis is an acute infectious disease that can infect humans and animalscaused by leptospira bacteria and classified as zoonotic pathogens. Outbreaks ofthe disease within a few years has been attacking people in Bantul. In the period2009 to March 2013 there have been 394 cases, based on these facts it isnecessary to mapping disease susceptibility regions to leptospirosis in order todetermine priority areas of treatment and prevention. Spatial pattern analysis ofspread of the disease leptospirosis is done by using a method Nearest NeighborDistance Average. Modelling the ecological mapping units using remote sensingdata to tap environmental data such as land use, soil texture, stream buffers, andthe buffers settlement with the visual interpretation method. Index models areused to create vulnerability models of leptospirosis disease. To test the accuracyof the data model is used the cases of leptospirosis which have plots in study field.Based on accuration test, it showed that there are 76 leptospirosis cases (or92.68%) layed on vulnerable area in Imogiri, Bantul and Jetis District. Spatialdistribution pattern analysis of the leptospirosis cases using average nearestneighbor distance methods showed that the distribution of the cases are groupedwith z score value is - 2.41.
Evidence Based Landslide Hazard Mapping in Purworejo using Information Value Model Approach Sudaryatno, Sudaryatno; Widayani, Prima; Wibowo, Totok Wahyu; Wiratmoko, Bagus; Nurbandi, Wahyu
Forum Geografi Vol 33, No 1 (2019): July 2019
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/forgeo.v33i1.7592

Abstract

Purworejo District, which is located in Central Java, Indonesia, is prone to landslides. These are a natural hazard that often occur in mountainous areas, so landslide hazard analysis is needed to develop mitigation strategies. This paper elaborates on the use of an evidence-based statistical approach using the Information Value Model (IVM) to conduct landslide hazard mapping. The parameters of slope, aspect, elevation, rainfall, NDVI, distance from rivers, distance from the road network, and distance from faults were employed for the analysis, which was conducted based on a raster data environment, since the pixel is the most appropriate means to represent continuous data. Landslide evidence data were collected by combining secondary data and interpreting satellite imagery to identify old landslides. The IVM was successfully calculated by combining factors related to disposition to landslides and data on 19 landslide occurrences. The results helped produce a landslide susceptibility map for the northern and eastern parts of Purworejo District.
Analisis Pengaruh Kerapatan Vegetasi terhadap Suhu Permukaan dan Keterkaitannya dengan Fenomena UHI Indrawati, Dewi Miska; Suharyadi, Suharyadi; Widayani, Prima
Media Komunikasi Geografi Vol 21, No 1 (2020)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/mkg.v21i1.24429

Abstract

Kota Mataram adalahpusat dan ibukota dari provinsi Nusa Tenggara Barat yang tentunya menjadi pusat semua aktivitas masyarakat disekitar daerah tersebut sehingga menyebabkan peningkatan urbanisasi. Semakin meningkatnya peningkatan urbanisasi yan terjadi di perkotaan akan menyebabkan perubahan penutup lahan, dari awalnya daerah bervegetasi berubah menjadi lahan terbangun. Oleh karena itu, akan memicu peningkatan suhu dan menyebabkan adanya fenomena UHI dikota Mataram.Tujuan dari penelitian ini untuk mengetahui hubungan kerapatan vegetasi dengan kondisi suhu permukaan yang ada diwilayah penelitian dan memetakan fenomena UHI di Kota Mataram. Citra Landsat 8 OLI tahun 2018 yang digunakan terlebih dahulu dikoreksi radiometrik dan geometrik. Metode untuk memperoleh data kerapatan vegetasi menggunakan transformasi NDVI, LST menggunakan metode Split Window Algorithm (SWA) dan identifikasi fenomena urban heat island. Hasil penelitian yang diperoleh menunjukkan kerapatan vegetasi mempunyai korelasi dengan nilai LST. Hasil korelasi dari analisis pearson yang didapatkan antara kerapatan vegetasi terhadap suhu permukaan menghasilkan nilai -0,744. Fenomena UHIterjadi di pusat Kota Mataram dapat dilihat dengan adanya nilai UHI yaitu 0-100C. Semakin besar nilai UHI, semakin tinggi perbedaan LSTnya.
Pemetaan Distribusi Kerentanan Penyakit Demam Berdarah di Kota Baubau Menggunakan Algoritma Machine Learning Mizan, Rahmat Azul; Widayani, Prima; Farda, Nur Mohammad
JAGAT (Jurnal Geografi Aplikasi dan Teknologi) Vol 4, No 2 (2020): JAGAT (Jurnal Geografi Aplikasi dan Teknologi)
Publisher : Universitas Halu Oleo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33772/jagat.v4i2.14664

Abstract

Sejak tahun 2013 hingga tahun 2017 serangan penyakit demam berdarah (DBD) di Kota Baubau terus mengalami peningkatan jumlah angka kesakitan. Laporan Dinas Kesehatan Propinsi Sulawesi Tenggara Tahun 2018 menunjukan fakta bahwa Baubau merupakan kota dengan angka kejadian DBD tertinggi ketiga dari 17 kabupaten/kota lainnya. Pemetaan distribusi tingkat kerentanan wilayah terhadap penyakit DBD merupakan langkah penting dalam mendukung penyusunan strategi penanganan penyakit DBD. Penelitian ini bertujuan memetakan dan mendeskripsikan distribusi tingkat kerentanan lokasi penelitian. Kota Baubau sebagai lokasi penelitian dengan mengambil populasi sebanyak 129 kasus kejadian sepanjang tahun 2015 hingga Februari 2016. Dalam penelitian ini, kami mensimulasikan distribusi kerentanan wilayah terhadap penyakit demam berdarah pada resolusi spasial 30x30 meter. Model dibuat menggunakan dua algoritma machine learning yang cukup kuat dan umum digunakan mencakup support vector machine (SVM) dan random forest (RF) dengan melibatkan sejumlah variabel seperti penggunaan/tutupan lahan, NDVI, BLFEI, LST, curah hujan dan kelembapan tahunan yang diturunkan dari citra Landsat 8 OLI/TIRS dan data iklim BMKG serta BWS. Kemampuan model dinilai menggunakan kurva area under curve-receiver operating characteristic (AUC-ROC). Hasil penelitian menunjukan Kecamatan Batupuaro dan Murhum merupakan kecamatan yang wilayah administrasinya didominasi oleh zona rentan sebesar 92,54% dan 41, 74% dari luas total wilayah masing-masing
Aplikasi object-based image analysis untuk identifikasi awal permukiman kumuh menggunakan Citra satelit worldview-2 Prima Widayani
Majalah Geografi Indonesia Vol 32, No 2 (2018): Majalah Geografi Indonesia
Publisher : Fakultas Geografi, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4110.241 KB) | DOI: 10.22146/mgi.32306

Abstract

Permukiman kumuh adalah perumahan yang mengalami penurunan kualitas fungsi sebagai tempat hunian.  Tidak layak huni karena ketidakteraturan bangunan, tingkat kepadatan bangunan yang tinggi, dan kualitas bangunan serta sarana dan prasarana yang tidak memenuhi syarat, (UU No.1 Tahun 2011). Permukiman kumuh banyak ditemukan di kota-kota besar termasuk di sebagian Kota Yogyakarta, karena tidak layak dari sisi keaman, kesehatan dan tidak sesuai dengan tata ruang kota, maka perlu penanganan kawasan permukiman kumuh ini. Sebagai upaya penanganan kawasan kumuh, dibutuhkan pemantauan kawasan permukiman kumuh secara berkelanjutan, sehingga perlu suatu identifikasi cepat untuk membantu pemetaan kawasan kumuh. Penelitian ini bertujuan untuk  identifikasi awal permukiman kumuh menggunakan pendekatan Object Base Image Analysis (OBIA) serta menguji kemampuan interpretasi OBIA dalam melakukan pengenalan permukiman kumuh berdasarkan ciri fisik permukiman. Data yang digunakan berupa Citra Satelit Worldview-2 tahun perekaman 2016, data kawasan kumuh Kota Yogyakarta dari program KOTAKU Yogyakarta, dan data survey lapangan. Alat yang digunakan berupa GPS, computer yang dilengkapi dengan software Ecognition, ENVI dan ArcGIS.10.2. Langkah pertama yang dilakukan sebelum menjalankan proses OBIA adalah mengenali karakteristik permukiman kumuh baik dari studi literatur, perundang-undangan maupun pengamatan lapangan. Berdasarkan studi sebelumnya dapat disusun aturan/kunci interpretasi untuk mendeteksi permukiman kumuh. Hasil identifikasi awal permukiman kumuh menggunakan OBIA dapat dilakukan berdasarkan analisis pola permukiman, kondisi jalan, tekstur, vegetasi dan jarak dengan sungai. Identifikasi permukiman kumuh di wilayah pinggiran sungai berdasarkan kondisi fisik permukiman menggunakan citra Wordview-2 mengasilkan ketelitian sebesar 82,14%.  Ketelitian ini dapat dikatakan baik sehingga kedepannya diharapkan dapat membantu identifikasi awal dalam rangka pemetaan permukiman kumuh terutama di wilayah pinggiran sungaiABSTRACTSlums are housing that have decreased the quality of function as dwellings. Uninhabitable due to building irregularities, high levels of building density, and the quality of buildings and facilities and infrastructure that do not meet the requirements, (Act No.1 of 2011). Slum settlements are found in large cities including in parts of Yogyakarta City, because they are not feasible in terms of security, health and are not in accordance with the urban spatial structure, it is necessary to deal with these slums. As an effort to deal with slum areas, it is necessary to monitor slum areas in a sustainable manner, so that a quick identification is needed to assist in mapping the slums. This study aims to initial identification of slums using the Object Base Image Analysis (OBIA) approach and to test the ability of OBIA's interpretation of the introduction of slums based on physical characteristics of settlements. The data used are recording Worldview-2 years Satellite Image 2016, data from Yogyakarta City slum area from Yogyakarta KOTAKU program, and field survey data. The tools used in the form of GPS, computers equipped with Ecognition, ENVI and ArcGIS software.10.2. The first step taken before carrying out the OBIA process is to recognize the characteristics of slums both from literature studies, legislation and field observations. Based on previous studies, rules / key interpretations can be prepared to detect slums. The results of the initial identification of slums using OBIA can be done based on the analysis of settlement patterns, road conditions, texture, vegetation and distance to the river. Identification of slums in the riverside area based on the physical conditions of settlements using Wordview-2 imagery resulted in accuracy of 82.14%. This accuracy can be said to be good so that in the future it is expected to be able to help initial identification in the framework of mapping slum settlements, especially in the riverside areas 
PENGINDERAAN JAUH UNTUK ZONASI KERENTANAN RAWAN PANGAN BERDASARKAN KONDISI BIOFISIK LAHAN DI KABUPATEN PURWOREJO PRIMA WIDAYANI
Jurnal Agroteknologi Vol 4, No 2 (2014): Februari 2014
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ja.v4i2.1135

Abstract

Food is a basic need that the demand is increasing in line with the population growth. A new approach of agricultural development is needed in order to fulfill the food need in the present and the future. The approach is to determine the food security in a region by using the Food Security Atlas. The previous atlas is still in the national scale, so it needs additional researches in the local scale. This study aims to create a map of food vulnerability in the Purworejo district as an input to determine the food security. The parameters used to create the vulnerability map are the percentage of vegetated land area, rainfall anomalies, the percentage of crop failure area due to flood or pests, and land degradation due to erosion. Remote sensing data are used to create the percentage of vegetated land area map, land use map, land unit map, flood and erosion map. All parameters are given values to classify the food vulnerability. The results show that the vulnerable regions are not only in the transition area between hills and plain area, which are in Bruno, Pituruh, Kemiri, Kaligesing, and Loano sub-district, but also in the southern coastal region, which are in Ngombol and Grabag sub-district. Calculation show that the area of food secured regions in Purworejo are 63,11 km2, the secured enough regions are 804.96 km2, while the vulnerable regions are 218,24 km2 .